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The objects we perceive guide our eye movements when
observing real-world dynamic scenes. Yet, gaze shifts
and selective attention are critical for perceiving details
and refining object boundaries. Object segmentation
and gaze behavior are, however, typically treated as two
independent processes. Here, we present a
computational model that simulates these processes in
an interconnected manner and allows for
hypothesis-driven investigations of distinct attentional
mechanisms. Drawing on an information processing
pattern from robotics, we use a Bayesian filter to
recursively segment the scene, which also provides an
uncertainty estimate for the object boundaries that we
use to guide active scene exploration. We demonstrate
that this model closely resembles observers’ free
viewing behavior on a dataset of dynamic real-world
scenes, measured by scanpath statistics, including
foveation duration and saccade amplitude distributions
used for parameter fitting and higher-level statistics not
used for fitting. These include how object detections,
inspections, and returns are balanced and a delay of
returning saccades without an explicit implementation
of such temporal inhibition of return. Extensive

simulations and ablation studies show that uncertainty
promotes balanced exploration and that semantic object
cues are crucial to forming the perceptual units used in
object-based attention. Moreover, we show how our
model’s modular design allows for extensions, such as
incorporating saccadic momentum or presaccadic
attention, to further align its output with human
scanpaths.

Introduction

Humans actively move their eyes to pay attention to
individual parts of their environment. Several seminal
studies have explored eye movements in natural contexts
(Land & Lee, 1994; Land, Mennie, & Rusted, 1999;
Pelz, Hayhoe, & Loeber, 2001; Triesch, Ballard, Hayhoe,
& Sullivan, 2003; Rothkopf, Ballard, & Hayhoe, 2007;
Tatler, Hayhoe, Land, & Ballard, 2011; Mital, Smith,
Hill, & Henderson, 2011; Matthis, Yates, & Hayhoe,
2018), yet we lack a mechanistic understanding of
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gaze control in such natural conditions. Computational
models of visual attention provide an invaluable tool
to analyze the contributions of distinct mechanisms
and link them to observable behavior (Itti & Koch,
2001; Borji & Itti, 2012; Roth, Rolfs, Hellwich, &
Obermayer, 2023; Kümmerer & Bethge, 2023). In this
work, we present an object-based computational model
that reproduces human free-viewing eye-tracking data
(with a stationary head position) when observing
natural dynamic scenes. In addition to the saccadic
decision-making process, we also model how the basic
building blocks—on which object-based attention can
act—can be formed. Our model is mechanistic in the
sense that it implements algorithmic principles behind
attentional mechanisms. Specifically, we aim to capture
how information is integrated to determine the next
saccade target and how different object cues contribute
to the formation of perceptual units for object-based
attention. However, we do not prioritize the plausibility
of how the inputs to these mechanisms are computed in
the first place, nor do we make claims about the neural
implementation of these mechanisms in the brain. The
model’s modularity then allows us to systematically
test the effect and contribution of different attentional
mechanisms on the simulated gaze behavior, which can
be directly compared with human eye-tracking results.

Visual attention sequentially selects objects for
perceptual processing and provides the information to
generate a motor plan for eye movements (Deubel &
Schneider, 1996). Different psychophysical experiments
have, depending on the task and presented visual
stimulus, uncovered different aspects of attention
(for an overview, see Carrasco, 2011; Nobre &
Kastner, 2014). The most prominent theories of visual
attention describe it as space, feature, or object based.
Space-based attention is classically characterized as
a spotlight (Posner, 1980) or zoom lens (Eriksen &
Yeh, 1985) that enhances processing at the attended
location. The attended location is typically selected
based on maxima in a priority or saliency map (Koch
& Ullman, 1985; Itti & Koch, 2001). Independent
of a specific location, feature-based attention can
be deployed covertly to objects that share a specific
attribute, like color or motion direction (Treue &
Trujillo, 1999; Saenz, Buracas, & Boynton, 2002; White
& Carrasco, 2011). Evidence for object-based attention
was, for example, found in experiments where attention
was allocated to one of two objects that share the
same location (Duncan, 1984; O’Craven, Downing, &
Kanwisher, 1999; Blaser, Pylyshyn, & Holcombe, 2000)
and where attention was directed faster to locations
within an attended object than to locations outside
the object (Egly, Driver, & Rafal, 1994; Malcolm &
Shomstein, 2015). The object specificity of attention
suggests that, at least in some cases, the underlying
units of attentional processing and selection are discrete
visual objects (for reviews, see Scholl, 2001; Peters &
Kriegeskorte, 2021). Cavanagh et al. (2023) presented

a compelling framework for how experimental findings
attributed to space- or feature-based attention can be
conceptualized as forms of object-based attention. We
have previously demonstrated using a computational
modeling approach that objects are particularly
important for gaze guidance during free viewing of
dynamic natural scenes (Roth et al., 2023).

When simulating human eye movements in natural
scenes, models are typically limited in at least one
of two ways: modeling only the average spatial gaze
density instead of individual scanpaths, or being only
applicable to static images instead of videos. Classic
saliency models have been extended to include motion
(e.g., Molin, Etienne-Cummings, & Niebur, 2015),
and deep learning models have been used successfully
for video saliency prediction (e.g., Wang, Shen, Guo,
Cheng, & Borji, 2018; Droste, Jiao, & Noble, 2020).
However, saliency models are restricted to modeling the
average spatial distribution of gaze positions. Models
capable of describing the attentional dynamics of
individual saccadic decisions usually assume the scene
to be static and are not applicable to dynamic scenes
(e.g., Itti, Koch, & Niebur, 1998; Tatler, Brockmole,
& Carpenter, 2017; Wloka, Kotseruba, & Tsotsos,
2018; Schwetlick, Rothkegel, Trukenbrod, & Engbert,
2020; Kümmerer, Bethge, & Wallis, 2022). Rather than
relying on these simplifications of common models
(for reviews, see Borji & Itti, 2012; Bylinskii et al.,
2015; Kümmerer & Bethge, 2023), our approach
predicts full scanpaths, including the order and timing
of fixation and smooth pursuit events, for dynamic
videos. Our previous scanpath model (Roth et al.,
2023) describes the saccadic decision-making processes
during the free-viewing of dynamic scenes but requires
explicitly provided object segmentations for modeling
object-based attention. How the building blocks of
object-based attention arise before being actively
attended and what mechanisms contribute to the
formation of these perceptual units are, however, open
questions (Wagemans et al., 2012).

Classic theories of the visual system propose that
visual processing involves organizing elements of the
scene into coherent units through structured operations
(Ullman, 1984; Bundesen, 1990). To describe what
object-based attention can act on, “proto-objects”
were introduced as pre-attentive volatile units that can
be accessed and further shaped by selective attention
(Rensink, 2000). Walther and Koch (2006) proposed
a model that generates such proto-objects for static
scenes based on salient regions defined based on color,
edges, and luminance. In contrast, psychophysical
studies showed that saliency-based proto-objects are
less predictive of where people look in real-world
scenes than semantically defined objects (Nuthmann
& Henderson, 2010; Pajak & Nuthmann, 2013). This
suggests that pre-attentive objects can also be formed
based on semantics and do not rely solely on low-level
saliency. In the same vein, human reconstruction of
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local image regions is controlled by semantic object
boundaries, which are constructed within 100 ms of
scene viewing (Liu, Agam, Madsen, & Kreiman, 2009;
Neri, 2017), whereas rapid serial visual representation
tasks show that scene identification can be even
faster (Potter, Wyble, Hagmann, & McCourt, 2014).
Although object boundaries are formed globally, the
recognition of individual objects and perceiving their
visual details still requires selective attention (Wolfe,
1994; Henderson, 2003; Underwood, Templeman,
Lamming, & Foulsham, 2008; Wolfe, 2021) and the
confidence in information about the foveated objects
increases (Stewart, Ludwig, & Schütz, 2022).

Because perceived objects guide eye movements while
gaze shifts influence object perception, the modeling
of object-based saccadic decisions requires linking the
two interdependent processes. Such interdependences
pose a challenge for many modeling approaches
that tend to treat model components as almost
independent. A similar challenge exists in robotics,
where a robot usually needs to decide on actions
given the highly interdependent information from its
different sensors (Eppner et al., 2016). Therefore, we
model the interdependent segmentation and saccadic
decision-making by using an information processing
pattern from robotics, called Active InterCONnect
(AICON; see Battaje, Godinez, Hanning, Rolfs, &
Brock, 2024), which has been applied to robustly solve
such problems for real-world robotic systems (Martín-
Martín & Brock, 2022). It is centered around building
bidirectional connections between components that
allow for the interpretation of sensory cues while taking
into account the extracted information from other
components. In a recent example of this approach, we
combined motion and appearance segmentation of
objects to disambiguate each cue (Mengers, Battaje,
Baum, & Brock, 2023). By additionally extracting
kinematic object motion constraints from their
observed motion, predicting their future motion
becomes easier (Martín-Martín & Brock, 2022), which
in turn simplifies segmenting them (Mengers et al.,
2023). Although these bidirectional interactions of
components are similar to the top-down influence of
higher abstractions on low-level visual processing in
reverse hierarchy theory (Ahissar & Hochstein, 2004)
or interpretation-guided segmentation (Tenenbaum
& Barrow, 1977), they become more informative
by estimating the uncertainty of each component’s
extracted information. This way, the information
of different components can be weighted in their
connections, and the robot can act according to the
current uncertainty, for example, by moving more
carefully or actively obtaining more information (Bohg
et al., 2017).

We transfer this idea to the modeling of
interdependent segmentation and visual exploration in
dynamic real-world scenes: The components for visual

target selection and segmentation of the scene are in
an active interconnection regulated by uncertainty.
Segmented objects can act as uncertain perceptual units
for target selection, while moving the gaze toward a
particular object can resolve the uncertainty over its
segmentation. The initial segmentation of a presented
scene is estimated globally, meaning that objects
that have not yet been foveated are also segmented
throughout the visual field (cf., Neisser, 1967). We build
on psychophysical evidence, showing that an initial
global scene segmentation can be obtained already
within the first fixation based on low-level appearance
(Schyns & Oliva, 1994), motion (Reppas, Niyogi, Dale,
Sereno, & Tootell, 1997), and semantic (Neri, 2017)
object cues. These pre-attentive object boundaries are
sequentially refined through high-quality segmentation
masks of the actively attended (i.e., foveated) objects
(Henderson, 2003). We treat these different sources of
object information as inherently uncertain cues, which
we combine in a Bayes filter, a recurrent mechanism
that optimally combines the different input sources and
updates its compressed representation based on new
measurements over time (Särkkä, 2013). Similar to the
related Bayes filter for object segmentation in robotics
(Mengers et al., 2023), the tracked uncertainty over
the segmentation is estimated based on the agreement
of its measurements over time. Thus, this uncertainty
describes where the existence or location of boundaries
between objects is ambiguous (for more details, see
Appendix A). Combined with other scene features,
like visual saliency, this uncertainty about the object
segmentation drives the active exploration of the
scene and contributes to the saccadic decision-making
process. The high-resolution semantic segmentation of
the object at the current gaze position, in turn, provides
a high-confidence measurement and updates the object
representation in the Bayes filter. This reduces the
uncertainty at the current gaze position and encourages
further exploration of other parts of the scene.

The automatic generation of an uncertainty map as a
result of our object segmentation hence provides us with
an advantage over existing mechanistic computational
models of visual attention. They typically rely on an
explicitly implemented mechanism, called inhibition
of return (IOR), to propel exploration (cf., Itti and
Koch, 2001; Zelinsky, 2008; Schwetlick et al., 2020;
Roth et al., 2023). IOR as an attentional effect was first
described by Posner and Cohen (1984) as the temporary
inhibition of the visual processing of recently attended
scene parts. Although the initial experiment did not
involve eye movements, subsequent studies have found
a temporal delay of return saccades (temporal IOR;
cf., Luke, Smith, Schmidt, & Henderson, 2014) and
that saccades are spatially biased away from previously
attended locations (spatial IOR; cf., Klein & MacInnes,
1999). These effects were interpreted as a foraging factor
to encourage attentional orientation to previously
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unexplored parts of the scene (Klein &MacInnes, 1999;
Klein, 2000). Itti, Koch, and Niebur (1998) hence used
IOR as a convenient mechanism to inhibit locations in
the saliency map to prevent their model from repeatedly
selecting the same most salient location. Including this
inhibition subsequently became the de facto standard
for mechanistic scanpath models. However, mounting
evidence suggests that IOR effects observed in cueing
tasks (Posner & Cohen, 1984; Tipper, Driver, & Weaver,
1991) do not play a significant role in gaze behavior
under most conditions: Fixation distributions in scene
viewing and visual search actually find an increased
probability of returns and an absence of spatial IOR
(Hooge, Over, van Wezel, & Frens, 2005; Smith &
Henderson, 2009; Smith &Henderson, 2011). The effect
of temporal IOR in scene viewing has been explained
by Wilming, Harst, Schmidt, and König (2013) through
“saccadic momentum,” a general dependency of
fixation durations and subsequent relative saccade
angles tendency for saccades to continue the trajectory
of the last saccade (Anderson, Yadav, & Carpenter,
2008; Smith & Henderson, 2009).

In the present work, we propose a mechanistic
computational scanpath model that does not rely on
active IOR as a mechanism to drive scene exploration.
Instead, we used a close interaction between the
object segmentation and the saccadic decision-making
processes to leverage uncertainty over the object
boundaries in the scene to encourage exploration.
We show that these interconnected processes lead
to human-like gaze behavior for dynamic real-world
scenes. The modular implementation of our model
allows for principled hypothesis testing by analyzing
the influence of different implementations on the
simulated gaze behavior. We systematically explore
the influence of the object uncertainty on the model
scanpaths and find that it leads to an exploration
behavior that closely resembles the human data. It
even reproduces the temporal IOR effect without the
need for an explicit IOR implementation. Moreover,
we show that access to high-level object information
leads to more realistic scanpaths, suggesting that
perceptual units of human attention are shaped by
semantic knowledge. Finally, we demonstrate how the
model can easily be extended to include additional
mechanisms like saccadic momentum and presaccadic
attention.

Materials and methods

A model for interdependent saccadic decisions
and object segmentation

We propose a model for the two processes of
saccadic decision-making and object segmentation in
natural scenes. To establish an active interconnection

between them, we use a design principle from robotics
(Martín-Martín & Brock, 2022) that focuses on
bidirectional interactions between components. For our
model, this means that we implement both saccade
target selection and object segmentation as components
that require the other’s current state as input, as shown
in Figure 1. Critically, we consider the uncertainty of the
current segmentation to weigh different segmentation
measurements. This segmentation uncertainty is also an
input to our saccade target selection, as studies of eye
movements in natural environments have shown that
uncertainty about the state of the visual environment
is important to understand and predict gaze behavior
(Gottlieb, Oudeyer, Lopes, & Baranes, 2013; Hayhoe &
Matthis, 2018).

We explain how each component models the
respective process based on the visual input and the
other component’s current state. We start with the
component for object segmentation, which we adapted
from our previous work in robotic perception (Mengers
et al., 2023) to account for object information at
the current gaze position and top-down semantic
information. Then we explain how we modified our
previous model for the saccadic decision-making
process (Roth et al., 2023) to take advantage of both the
segmentation and its estimated uncertainty.

Estimating object segmentation and its uncertainty
In real-world scenes, object segmentations based

on semantics, motion, and appearance will typically
not wholly agree (Hackett & Shah, 1990; Pantofaru,
Schmid, & Hebert, 2008). This leads to ambiguity and
uncertainty when combining different object cues (Chen
& Pavlidis, 1980; Hackett & Shah, 1990; Pantofaru
et al., 2008; Mengers et al., 2023). For example, an
object of similar color to the environment that does
not move might be counted toward the background
(in Figure 2, the shirt of the person on the right
disappears in appearance segmentation), whereas an
object made up of multiple similarly colored parts that
can move relative to another might be segmented into
these parts according to their motion (in Figure 2,
the lower half of the person on the left is not moving
together with the upper and hence disappears in motion
segmentation). Therefore, we aim not only to estimate
the object segmentation, but also to explicitly estimate
the current uncertainty over it. To do so, we combine
multiple cues for object segmentation as measurements
in a recursive Bayesian filter (Särkkä, 2013). This
filter updates the object segmentation with each new
measurement while also estimating its uncertainty,
similar to the segmentation filter in previous work on
object segmentation for robotics (Mengers et al., 2023).
As shown in Figure 2 on the left, we consider three
measurements of pre-attentive global segmentation
based on motion, appearance, and semantics, as well
as segmentation of only the locally attended object.
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Figure 1. Saccadic decisions and object perception influence each other, as reflected by their interconnection in our model. We
illustrate the information flow in our model during the processing of a single frame from a dynamic video. Object segmentation is
informed by multiple global object cues and a high confidence prompted segmentation of the foveated object. The segmented
objects act as perceptual units for the saccade target selection. The uncertainty over object segmentation plays a key role in driving
exploration while being resolved through high-confidence measurements at the current gaze position. Because both the dynamic
scene and gaze change over time, the recursive estimator continuously updates the segmentation and its uncertainty.

Video Frame

Segmentation

Uncertainty over 
Segmentation

Segmentation 
Sample Set

Entropy of the 
Sample Set

Marginalizing
over the

Sample Set

Motion Segmentation

Appearance 
Segmentation

Semantic 
Segmentation

Segmentation of the 
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Current Gaze

Recursive 
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Flow of 
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Figure 2. Our model combines multiple object cues to estimate both object segmentation and its uncertainty recursively. We integrate
foveated and global segmentations of the scene (left) in a Bayesian filter (middle), which maintains a belief over the current state,
represented by a weighted set of multiple possible segmentation samples (14 example samples from the full set of 50 are shown). We
then compute the currently most likely segmentation and its uncertainty (right), which we use to inform saccadic decisions.

This attentive segmentation is particularly important
because it has greater confidence (Stewart et al., 2022),
thereby reducing segmentation uncertainty dependent
on the current gaze. This is one direction of the strong
interaction between object segmentation and saccadic

decision-making in our model. We now describe
how we obtain the different measurements of object
segmentation, before explaining how we combine them
in a Bayesian way using a particle filter to estimate both
segmentation and its uncertainty.
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Cues for the current object segmentation
We aim to design a directly image-computable model

and thus rely only on the RGB video as input for
pre-attentive global segmentation. We extract three
object segmentation cues from it: low-level appearance,
higher-level semantic features, and common motion.
For the appearance segmentation, we use the simple
graph-based method by Felzenszwalb and Huttenlocher
(2004) because it already provides reliable regions of
common appearance. For the semantic segmentation,
we face a more complex problem, for which we leverage
recent advances in large, data-driven segmentation
models (Kirillov et al., 2023). Concretely, we obtain a
semantic segmentation using the method by Ke et al.
(2023). To find common motion in the scene, we first
quantify motion as optical flow between subsequent
frames using a state-of-the-art, data-driven method (Shi
et al., 2023). We then find parts that move together by
applying the same graph-based method (Felzenszwalb
& Huttenlocher, 2004) as for appearance, because it
proves to be sufficiently reliable.

Moreover, we use the current gaze location to
inform object segmentation because gazing at an object
should afford higher-confidence measurements of its
boundaries (Henderson, 2003). To model such precise
measurements around the currently attended object,
we use a large data-driven segmentation model (Zhao
et al., 2023) that can develop a prompted segmentation
around a provided point (for more details, see Appendix
B). If we provide it with the current gaze location,
we obtain its highest confidence object that contains
this point. To further increase the quality of this
prompted high-confidence segmentation, we perform it
on the highest available resolution of the input image,
which we downsample for other cues (see Table D1).
We use the prompted segmentation as an additional
input to our filter for object segmentation. Because
the current gaze location is a result of the previous
saccadic decision process, this represents the connection
of the two components in one direction. We explain
the other, richer direction in Scanpath simulation,
but now continue to explain how we combine all the
described inputs to obtain one object segmentation
with uncertainty.

Combining different object segmentation measurements
in a particle filter

Our aim is to represent object segmentation and
its uncertainty, which means a belief over object
segmentation, and update this belief with new
measurements over time. Representing such a belief
is hard, because the space of possible segmentations
is complex, high-dimensional, and can have multiple
modes. Consequently, we cannot simply represent
this belief with a Gaussian over object segmentation.

We have shown previously that, instead, we can use
a Monte Carlo approach for such representations,
where each set of particles corresponds with the likely
segmentation of the scene (Mengers et al., 2023,
Sec. III-A). These particles together represent a belief
over the segmentation, which we can recursively update
with a particle filter (Thrun, Burgard, & Fox, 2005). To
give an intuition for this particle filtering approach, let
us consider the general problem of estimating a belief
over a state st that dynamically changes over time and
for which we obtain measurements zt. When using a
particle filter, we represent the belief over the state st by
a set of different particles, each a hypothesis s[i] for the
current state. If the state was not dynamic, we could
now use the measurements over time to determine the
true state by weighting each hypothesis with a weight
w

[i]
t (Equation 1, where η is a normalizing factor and i is

the index of the particle). Unlikely states are removed
using weighted resampling, that is, redetermining the
particle set by randomly drawing with replacement
particles from the current set according to their weights.
To account for dynamism, we can add a prediction
step (Equation 2), where we adapt each hypothesis s[i]t
according to available information at on the current
development of the state st. For a more detailed
introduction and derivation of the particle filter, please
see (Thrun et al., 2005).

∀i : w
[i]
t = 1

η
· p(zt|s[i]t ) (1)

∀i : s[i]t ∼ p(st|s[i]t−�t, at ) (2)
When using such a particle filter to update a belief

over the segmentation of a scene, each particle s[i]t is
one possible segmentation of the scene into objects
(see Figure 2). Together, these particles represent
different hypotheses for the object segmentation of
the scene and—in their (dis-)similarities for different
parts of the scene—varying levels of uncertainty. We
recursively filter this set to account for the dynamism of
the scene and integrate new measurements of the real
segmentation by implementing Equations 1 and 2: To
perform predictions (Equation 2) of these particles, we
use the current optical flow as at to shift the boundaries
between objects in each particle’s segmentation
according to the estimated motion between frames.
Then, we weigh the resulting segmentation particles
according to their distance to each of our measurements
(Equation 1), resampling the set according to the
product of the resulting weights. To determine this
distance between a particle’s segmentation and a
measured segmentation, we compute the average
distance of their object boundaries, as described in more
detail in Appendix C1. In addition to weighting and
resampling the particles based on current segmentation
measurements, we also adjust the belief by directly
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incorporating measured segments into some of the
particle segmentations. This is not strictly necessary
because these measurements are, in principle, already
incorporated in the particles. Still, modifying some
of the particles to more closely resemble the current
measurements is computationally favorable because it
allows for a higher quality of the belief approximation
around the most likely areas and makes the approach
more robust for a smaller number of particles, as
explained in (Mengers et al., 2023, Sec. III-C). The
resulting resampled set then represents the currently
most likely segmentation hypotheses according to the
measurement history.

Obtaining object segmentation and its uncertainty
Although the set of segmentation samples is useful

to maintain a belief over the segmentation into objects,
it is challenging to utilize in saccadic decision-making.
Therefore, we marginalize across the sample set at
each time step to obtain one object segmentation
and uncertainty estimate, as illustrated on the right
in Figure 2. We first determine the likelihood pb(x,
y) that each image pixel (x, y) is part of a boundary
between two segments by comparing the weights of all
particles with a boundary at a given pixel (the particle
set B(x, y)) against the weights of those without (the
particle set B̄(x, y)) as shown in Equation 3. Based on
these boundary likelihoods, we can then obtain the
currently most likely segmentation by thresholding
and closing contours. Compared with the full set of
segmentation samples, this is, of course, some loss
of information, but we preserve the information on
the agreement between particles by explicitly deriving
the current uncertainty. To do so, we evaluate the
entropyH(x, y) of the previously thresholded boundary
likelihood (Equation 4), resulting in high values where
some samples have boundaries, although others do not.

pb(x, y) =
∑

i∈B(x,y) w
[i]
t∑

i∈B(x,y)∪ B̄(x,y) w
[i]
t

(3)

H (x, y)= −pb(x, y) · log(pb(x, y))
−(1 − pb(x, y)) · log(1 − pb(x, y)) (4)

We use the obtained object segmentation and
uncertainty to select saccade targets in a drift-diffusion
model (DDM) over the objects. To do so, we need to
ensure that the same object keeps the same IDwithin the
segmentations over time. Therefore, we use a variation
of the Hungarian algorithm (Hopcroft & Karp, 1973)
to match object IDs between object segmentations.
Specifically, we determine the similarity of the segments
in the current object segmentation to those in the past
10 time steps by determining their intersection over
union, discounted for older segmentations to favor

keeping the currently used object IDs. This results in a
weighted bipartite graph from old segment IDs to new
segments, in which we find the matching where each new
segment is matched with an ID such that the sum of all
weights is maximized (see Jonker & Volgenant, 1987).
If no existing ID can be matched, a new ID is assigned.
For further details on this matching procedure, see
Appendix C2. The segmentation map then forms the
basis for the object-based attention mechanism in the
scanpath simulation, which we describe in detail in the
next section.

Scanpath simulation
We model the saccadic decision-making process

by adapting the object-based Scanpath simulation in
Dynamic scenes (ScanDy) framework (Roth et al.,
2023). The scanpath simulation updates its internal
state, which includes a decision variable for all potential
target objects in the scene, as segmented through
the particle filter (Figure 2). We model the target
selection process of where and when to move the gaze
position with a DDM, in which each object represents
a potential saccade target (cf. Figure 2). The decision
variable for each object depends on its eccentricity
given the current gaze position, how relevant the visual
scene features are, as measured by salience, and the
uncertainty of the local object boundaries, as provided
by the segmentation particle filter. Notably, the model
does not rely on an explicit implementation of the IOR
mechanism.

Scene relevance based on salient features
We quantify the relevance of the scene content for

gaze behavior by computing frame-wise feature maps
F. Because we model free-viewing gaze behavior, where
the observers have no explicit task, we approximate the
relevance of different parts of the scene through visual
saliency. We used the video saliency model UNISAL
(Droste et al., 2020), which was jointly trained on
both image and video visual saliency datasets, since
it is lightweight and produces state-of-the-art results
on the DHF1K Benchmark (Wang et al., 2018). We
inferred the video saliency maps using the model
with the domain adaptation for the DHF1K video
dataset, which is most similar to the videos used in this
study. The resulting video saliency predictions used as
frame-wise feature maps F(x, y) are normalized to [0,1].
F is typically strongly localized around the most salient
object (cf. Droste et al., 2020). To allow the model to
rely less on this strongly focused map, we introduce a
model parameter fmin that linearly scales F to F′ ∈ [fmin,
1]. By reducing the effective value range, a higher fmin
parameter decreases the influence of the salience on the
saccadic decision-making process.
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Gaze-dependent visual sensitivity
The foveation of the human visual system leads to

a decrease in visual sensitivity with eccentricity from
the current gaze position. As in Roth et al. (2023),
we model the visual sensitivity S across the scene
with an isotropic Gaussian GS. We account for the
well-documented object-based attentional benefit (Egly
et al., 1994; Scholl, 2001; Malcolm & Shomstein, 2015)
by approximating the covert spread of attention across
the currently foveated object Of (1 if pixel is part of the
object, 0 if not) with a uniform sensitivity, replacing the
part of GS that falls within Of .

GS(x, y) = 1
2πσ 2

S
exp

(
− (x − x0)2 + (y − y0)2

2σ 2
S

)
(5)

S(x, y) =
{
1, if Of (x, y) = 1,
GS, else, (6)

where the standard deviation σ S = 7 dva is set according
to similar models (cf. Schwetlick et al., 2020; Roth et al.,
2023) and based on preliminary model explorations.

In addition, we implemented two possible model
extensions, which are not part of the base model but
can be incorporated into the visual sensitivity S, namely
saccadic momentum and presaccadic attention. In our
explicit implementation of saccadic momentum, we
increase the visual sensitivity in the direction of the
previous saccade by generating an angle preference map
based on the current gaze position and the angle of the
previous saccade. We set a maximal value, which will
be the sensitivity value in the direction of the previous
saccade angle, that decreases linearly with the angle
within a specified angle range to a minimum value. The
resulting map (see Figure F1a) is then multiplied with
S. In our implementation of presaccadic attention, we
assume a uniform spread of visual sensitivity across not
only the currently foveated object but also objects that
are likely to be the next saccade target (see Figure F1b).

Uncertainty over object segmentation
The visual system integrates different sources of

information into a coherent visual representation of the
environment (Milner & Goodale, 2006). If an object
moves or input sources differ, for example, when the
appearance and the motion-based segmentation find
different object boundaries, this leads to a disagreement
between instances in the segmentation particle filter.
We include the resulting uncertainty over the object
segmentation as the third contributing factor for the
saccadic decision-making process, in addition to the
relevance of the scene features and the gaze-dependent
visual sensitivity. The uncertainty measure is directly
obtained from the entropy H(x, y) of the previously
obtained boundary likelihood threshold in the object
segmentation particle filter (see Equation 4). We

smooth the resulting map with a Gaussian blur, so
uncertainties at the object boundaries are attributed to
both objects. The values in the uncertainty map are, by
construction, in the range U(x, y) ∈ [0, 1]. Analogous
to the scaling of the scene feature map, we introduce
the model parameter umin that linearly scales U to U′
∈ [umin, 1]. Higher values for umin hence effectively
downscale the influence of the object uncertainty on U′.
The uncertainty at the current gaze position is typically
low since the prompted segmentation of the currently
foveated object provides a refined object mask, which is
incorporated in the particle filter with high confidence.
Through this interaction, the uncertainty contribution
encourages the exploration of other objects in the scene.

Saccadic decision-making process
We describe gaze behavior as a sequential decision-

making process where objects in the scene accumulate
evidence for becoming the next saccade target over
time. As in the ScanDy framework (Roth et al., 2023),
we model this latent cognitive process using a modified
DDM (Ratcliff, Smith, Brown, & McKoon, 2016) with
multiple options. The DDM accumulates evidence for
each object over time (drift), while random fluctuations
perturb each decision variable (diffusion). Unlike a
classic DDM model, which includes only one decision
variable and two thresholds for alternative choices, our
model assigns each potential target object i a decision
variable Vi that accumulates toward a shared decision
threshold θ (see Drift Diffusion Process in Figure 3). As
soon as the accumulated evidence for one object exceeds
θ , a saccade to this target is initiated. Hence, the DDM
by design does not only model where but also when the
eyes move. The DDM drift rate μi for an object at a
given time depends on the task relevance based on scene
features F′(x, y), the visual sensitivity depending on the
current gaze position S(x, y), and the uncertainty of the
object segmentation U′(x, y). We multiply these maps
in every frame to an evidence map E(x, y, t) = S · F′ ·
U′, as shown in Figure 3. Next, we calculate μi for each
object mask Oi (1 if pixel is part of the object, 0 if not)
in the resulting object segmentation of the particle filter
(see Figure 2) as the average evidence across the mask
Ē (Oi, t), scaled by the area Ai of the object, with

Ē (Oi, t) =
∑

x,y E (x, y, t)∑
x,y Oi(x, y, t)

, (7)

Ai(t) =
∑
x,y

Oi(x, y, t) · (1 dva/1 px)2, (8)

μi(t) = Ē (Oi, t) · max (1, log2Ai(t)) . (9)

We convert the area from px2 to dva2 to ensure
that videos with different resolutions are treated
appropriately and scale the object’s perceptual size
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Figure 3. Our model makes saccadic decisions based on objects and is driven by uncertainty. It combines the uncertainty over object
segmentation with salience and gaze-dependent sensitivity (left) into evidence for individual objects (middle). This evidence is then
accumulated for each object in a drift-diffusion process (right). As soon as its threshold is passed, a saccade to this object is executed,
otherwise the gaze smoothly pursues the currently foveated object.

logarithmically (cf., Nuthmann, Einhäuser, & Schütz,
2017) to account for the difference in object sizes.

The decision variable Vi for each object is then
updated based on μi and random fluctuations in the
diffusion term ε ∼ N (0, 1), with

Vi(t + �t) = Vi(t) + ν · (μi(t)�t + sε
√

�t), (10)

where the noise level s is a free parameter, and ν is the
fraction of time within �t spent on foveation since no
evidence is accumulated during saccades. We set the
update time resolution �t = 1, measured in frames. We
assume a linear update in Vi and can hence calculate the
exact time when the decision threshold θ is crossed. As
soon as θ is reached, we reset all decision variables Vi
= 0 ∀i, and a saccade is executed to the corresponding
object. The saccade duration τ s scales linearly with the
saccade amplitude as (Collewijn, Erkelens, & Steinman,
1988; Roth et al., 2023) with

τs = 2.7ms/dva · as + 23 ms. (11)

Gaze update
We update the simulated gaze position at each time

step (i.e., video frame). If the DDM threshold θ is not
reached, the gaze point moves with the optic flow at its
current position. This results, depending on the object
and camera motion in the video, in either fixation or
smooth pursuit behavior where the gaze moves with
the object. If an i exists with Vi > θ , a saccade is
triggered to Oi. The exact landing position within Oi is
determined probabilistically, with the probability pi(x,

y) of each pixel being proportional to the scene features
F and gaze-dependent visual sensitivity S:

pi(x, y) ∼ Oi(x, y, t0) · F ′(x, y, t0) · S(x, y, t0). (12)

Dataset

We compared the simulated scanpaths with
human eye-tracking data recorded under free-viewing
conditions on videos of natural scenes. We collected
eye-tracking data from 10 participants (8 female; mean
age, 34.4 years; range, 23–69 years) on 43 video clips
from the unidentified video objects (Wang, Feiszli,
Wang, & Tran, 2021) dataset (10 used for parameter
tuning, 33 used for testing the model; randomly split).
The videos were selected to show diverse content and
to have temporally consistent, densely annotated object
masks for the first 90 frames (cf. Wang et al., 2021).

We recorded eye-tracking data for the here-used
videos with an Eyelink 1000+ tabletop system (SR
Research, Osgoode, ON, Canada) with a 1,000 Hz
sampling rate, as part of an ongoing collaborative
large-scale eye movement database (publication of full
dataset in preparation). We presented the videos in a
dark room on a wall-mounted 16:9 video-projection
screen (size: 150 × 84 cm, Stewart Luxus Series
“GrayHawk G4,” Stewart Filmscreen, Torrance, CA)
at a distance of 180 cm from the study participants.
We used a PROPixx projector (Vpixx Technologies,
Saint-Bruno, QC, Canada) operating with 1,920 ×
1,080 pixels resolution on its native vertical refresh
rate of 120 Hz. All videos were shown with a 30
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fps framerate and (depending on their aspect ratio)
scaled to a size of maximally 38.2 dva horizontally or
21.5 dva vertically (1,536 × 864 pixels) to avoid high
eccentricities. Participants started each trial with a
fixational control (red dot on a black background) at
a random location within the area where the scene
was shown. The video was presented as soon as the
participant fixated the target location (tolerance radius
of 2 dva), ensuring high data quality and variation
in the initial gaze position. All participants provided
informed consent according to the World Medical
Association (2013) before data collection.

Event detection algorithm
Identifying saccades in gaze data in dynamic scenes

with object and camera movement in the scene can
be a challenging task due to the presence of smooth
pursuit eye movements. Potentially large pursuit
velocities lead to a high number of false positive
saccade detections in classic velocity-based algorithms
such as the Engbert-Mergenthaler (EM) algorithm
(Engbert &Mergenthaler, 2006). We, therefore, used the
state-of-the-art U’n’Eye neural network architecture
(Bellet, Bellet, Nienborg, Hafed, & Berens, 2019) and
fine-tuned the network to our dataset. We labeled
saccades, foveations (combining fixation and smooth
pursuit events), and post-saccadic oscillation (PSO)
events for one randomly selected second per video
from different subjects. Detecting PSOs is important
to reliably define the endpoint of a saccade and hence
precisely determine the duration of a foveation event
(Schweitzer & Rolfs, 2022). The U’n’Eye network,
with the training data we provided, was not able to
reliably detect PSOs. Hence, we used the PSO detection
based on saccade direction inversion, as described by
Schweitzer and Rolfs (2022). This algorithm expects
saccades in the format provided by the EM algorithm.
We, therefore, ran both the EM and U’n’Eye saccade
detection algorithms, determined the saccades that were
detected with both algorithms and then specified the
exact saccade endpoint using the direction inversion
criterion for PSO detection.

Metrics and parameter fitting

We determined the model parameters by comparing
the foveation duration and saccade amplitude
distributions of the simulated scanpath with the human
ground truth. We measured the similarity between
a simulated distribution N to the ground truth M
using the two-sample Kolmogorov-Smirnov (KS)
statistic D = supx |N(x) − M(x)|. We systematically
varied the DDM noise level s, the decision threshold
θ , and the relative importance of the feature map F′
and uncertainty map U′, quantified by the rescaling
parameters fmin and umin. We performed a coarse

grid search in this four-dimensional parameter space
on the 10 videos in the training set. We simulated
five different scanpaths (different random seeds)
for each parameter configuration and compared
them. Because we were particularly interested in the
effect of uncertainty on the simulated scanpaths, we
refined the grid search for each umin value around
the parameter sets leading to the lowest mean of
the KS statistics for the foveation duration DFD
and the saccade amplitude DSA. We present an
overview of all fixed and fitted model parameters, the
parameter grid, and details of the fitting procedure in
Appendix D.

With the model parameters chosen such that the basic
scanpath summary statistics of foveation durations
and saccade amplitudes matched the human data, we
evaluated the simulated scanpaths out-of-domain on
the test set, that is, on 33 previously unseen videos and
on different metrics than what the parameters on the
training set were selected for. For each parameter set,
we simulated 10 scanpaths and compared them with the
data from the 10 human observers. We focused on the
analysis of how gaze behavior balances the exploration
of the background of a scene (Background), uncover an
object for the first time for foveal processing (Detection),
explore further details of the currently foveated object
by making a within-object saccade (Inspection), or
return to a previously uncovered object (Return) (Linka
& de Haas, 2021; Roth et al., 2023). Comparing the
foveation durations in each category provides an
insightful metric of the exploration behavior, which is
particularly suited for dynamic scenes (see Roth et al.,
2023). In addition to evaluating models on the test set,
we also chose the later described base model among
different uncertainty values umin based on this metric
on the training set (see Model ablation 1: Uncertainty
drives exploration and Appendix D for more details).

Because our model does not have an explicit IOR
mechanism, we were particularly interested in whether
it could reproduce typical IOR effects. IOR describes
the inhibition of recently attended stimuli and the
resulting delayed response to them (Posner & Cohen,
1984; Klein, 2000). In a free-viewing condition, as
in the data used for this study, we therefore expect
that saccades that return to a previous gaze position
require more time to prepare. Hence, we analyzed the
distribution of relative saccade angles of the human
and simulated scanpaths. We divided all foveation
events into 30 bins depending on the relative angle of
the previous saccade (i.e., bin size of 12°). With the
expectation that foveations preceding a return saccade
(±180°) would be longer and foveations preceding
forward saccades (±0°) would be shorter, we calculated
the median foveation duration for each relative saccade
angle bin. We used the median foveation duration
instead of the mean to avoid a few very long events
(in particular, smooth pursuit events can last multiple
seconds), distorting the statistics for individual bins.
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Results

Our aim was to build an image-computable
and mechanistic computational model that closely
resembles human gaze behavior in dynamic real-world
scenes. In this section, we compare our model with
human scanpaths, first qualitatively in Qualitative
scanpath analysis and then quantitatively by reviewing
aggregated statistics in Aggregated scanpath statistics.
We systematically explore the influence of uncertainty
on visual exploration behavior in Model ablation
1: Uncertainty drives exploration. In an additional
ablation study, we probed the impact of individual
object representations as input sources and the
importance of the interaction between object
perception and saccadic decision-making for the
simulated scanpaths, as described in Model ablation 2:
Semantic object cues and component interconnections
form suitable perceptual units. Last, we show how our
model can be easily extended with additional modules,
such as saccadic momentum or presaccadic attention,
leading to more human-like saccade angle statistics and
slight improvements in early object detections (Model
extensions: Saccadic momentum improves saccade
angle statistic and presaccadic attention benefits early
object detections).

Qualitative scanpath analysis

Our model produces scanpaths that qualitatively
closely resemble human visual exploration behavior;
one example scanpath is shown in Figure 4 (see
videos in Appendix E for more examples and direct
comparisons with human scanpaths). The access to
individual mechanistic components of our model
makes the individual saccadic decisions transparent and
interpretable: Initially, all unexplored salient objects
have relatively high uncertainty, which is resolved
through large saccades towards them (Figure 4a; for a

more detailed analysis of the uncertainty development,
see Appendix A). Objects with particularly high
saliency are likely to be revisited (Figure 4b) or are
further inspected (Figures 4c and 4d). Return saccades
to previously foveated objects also become more likely
with time, as uncertainty over object boundaries can
rise again, for example, through object motion. This
qualitatively similar behavior of our model can also be
seen in Appendix E, where we show the exact scanpath
and all intermediate computational steps as videos for
10 simulations of our model as well as for 10 human
participants. We now further quantify these qualitative
similarities between the human and modeled gaze
behavior by comparing summary statistics of human
scanpaths with the model predictions across the whole
dataset.

Aggregated scanpath statistics

We compare our base model predictions to human
scanpaths on a set of videos not used for parameter
search. As described before, we selected the model
parameters to resemble the statistics of human
foveation duration and saccade amplitude on 10 videos.
The model generalizes well to the previously unseen
set of 33 videos, as shown based on the aggregated
scanpath statistics in Figure 5. Similar to human
eye-tracking data, the foveation durations (Figure
5a) of the simulated scanpaths follow a log-normal
distribution with a mean of 390 ms and a median
of 332 ms (humans: mean of 433 ms and median
of 316 ms). The distribution of the model is more
narrow compared to humans, which—if other metrics
would not be considered—could be corrected by
increasing both the decision threshold and the noise
level in the DDM, as described in Scanpath simulation.
The saccade amplitudes in the simulated scanpaths
(Figure 5b) follow the gamma distribution of the
human data with a mean of 3.70 dva and a median
of 2.81 dva (humans, mean of 3.40 dva and median
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Figure 4. The predicted scanpaths of our model show human-like exploration in dynamic scenes. In this video of the test dataset, the
model first follows uncertainty and detects two novel objects (dancers) (a), then returns to the first before detecting another one (b),
which is then further inspected primarily due to its high visual saliency (c and d). For a video version, see Appendix E.
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Figure 5. Aggregated statistics of the simulated scanpaths of the base model resemble the human eye-tracking data. (a) Histogram of
the duration of all foveations in the human ground truth data (red) and the base model (blue). (b) Histogram of the saccade
amplitude distributions. (c) Percentage of foveation events in the categories “Background” (maroon), “Detection” (orange),
“Inspection” (yellow), and “Return” (khaki) across all human (solid) and model (dashed) scanpaths as a function of time. (d) Median
duration of the preceding foveation durations for each saccade. We applied a centered circular moving average across five bins (12°
bin size) to reduce fluctuations in the median.

of 2.90 dva). These well-described statistics are not
explicitly implemented in the model, but emerge
from model constraints: Foveation durations are a
consequence of the way evidence is accumulated in the
decision-making process. Saccade amplitudes result
from the balance of local exploration, as encouraged by
the visual sensitivity, and global exploration, as driven
by uncertainty and noise in the DDM.

Beside replicating these basic summary statistics,
we are interested in how the exploration behavior
of our model compares to that of humans. Our
model, like the participants in our dataset, starts at
a random initial location on the scene. Hence, about
half of the scanpaths start on the background. In
Figure 5c, we can observe that the model—similar to
humans—quickly starts to favor the exploration of
novel objects (detections) rather than further exploring
the background. We additionally confirmed that, in a
large proportion of the scenes, the object that was first
detected by the majority of human observers was also
first detected in the majority of simulated scanpaths
(24 of 33 scenes in the test set, 72.7% agreement; base
rate, 23.6%, estimated as the average of 1

N0,s
across

scenes, where N0, s is the number of objects in the first
frame of each scene). After an initial peak in detections

in both models and humans, the amount of detection
decreases in both cases in favor of further saccades
within the currently foveated object (inspections) or
revisits of previously foveated objects (returns). Overall,
both in relative amounts and trends over time, the
balance between the exploration of the background,
new objects, and already seen objects of the model
resembles the human behavior well. Typically, such
a balance in exploration can be achieved through a
suitable parametrization of an explicitly implemented
IOR mechanism (cf., Itti & Koch, 2001; Roth et al.,
2023). We find that in our model, the relative influence
of the uncertainty map plays a crucial role in achieving
this balance, which we describe in detail in Model
ablation 1: Uncertainty drives exploration.

The model even shows the expected temporal IOR
effect (Klein & MacInnes, 1999; Luke et al., 2014), as
shown in Figure 5d, without explicitly implementing
it and without adjusting any parameters to reproduce
this statistic. We find a characteristic dip in foveation
durations before a saccade is executed in the same
direction as the previous saccade (forward saccades), as
observed in the human scanpaths. The preparation of
saccades with larger turning angles is slower. This is a
result of the uncertainty at the previous gaze position
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Figure 6. The uncertainty contribution in the model determines the exploration behavior. (a) Kernel density estimation (KDE) of the
distribution of foveation durations for the human data and simulated scanpaths with different uncertainty contributions. The dotted
line indicates a log-normal fit to the human data with μ = 5.815 and σ = 0.681 (equiv. to an expected value of eμ+ σ2

2 = 422.8 ms).
(b) KDE for the saccade amplitude distributions with a fitted Gamma distribution to the human data with shape α = 2.01 and rate β

= 0.59 (equiv. to an expected value of α
β

= 3.40 dva). (c) Ratio of time spent in the different foveation categories, as shown in Figure
5c, averaged across time. (d) Temporal IOR effect for the different uncertainty contributions, as in Figure 5d. The model with umin = 1

3
corresponds to the base model in Figure 5. Further information about the individual model parameters can be found in Appendix D.

being reduced through the foveated object cue, such
that the accumulation of evidence will take longer for a
return saccade (for a more detailed analysis, see Model
ablation 1: Uncertainty drives exploration).

In summary, our model also quantitatively resembles
human scanpaths in dynamic scenes, both in its basic
statistics and its exploration behavior. In the next
two sections, we further show that the similarities
between human and modeled scanpaths, particularly
the exploration behavior balances between the
different functions of foveations, can be attributed
to two features of our model: The consideration of
uncertainty and bidirectional interaction between
object perception, and saccadic decision-making
to generate appropriate perceptual units to operate
on.

Model ablation 1: Uncertainty drives
exploration

Our model uses the uncertainty measure of the
object segmentation module as an estimate for the
perceptual uncertainty that influences the gaze behavior
depending on the scanpath history. Here, we evaluate

the effect of this uncertainty mechanism, comparing
the simulated model scanpaths with a varying influence
of the uncertainty on the saccadic decision-making
process. Specifically, we vary the umin parameter of the
model where a higher value decreases the importance
of uncertainty. We also compare results from this
model with those of a version that does not consider
uncertainty at all.

We select the threshold θ and the noise level s of the
DDM for each value of umin anew to fit the foveation
duration and saccadic amplitude statistics (see Metrics
and parameter fitting). Hence, varying the importance
of uncertainty does not strongly influence the basic
scanpath statistics, as shown in Figures 6a and 6b.
Althogh the specific densities change, the general
shape of the log-normal (foveation duration) and
gamma (saccade amplitude) distributions remain stable.
However, how the model balances exploration behavior
changes considerably (Figure 6c): For high importance
of uncertainty (umin < 1

3 ), the model focuses on the
exploration of previously unvisited parts of the scene
(background, detection) or returns to previously
detected objects while only rarely further inspecting
the currently attended object. For low importance
(umin > 1

3 or “no uncert.”), in contrast, we observe the
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Figure 7. Semantic object cues and the interconnection through the gaze-dependent prompt are crucial for human-like simulated
scanpaths. (a–d) Analogous to Figure 6 for models that use different object cues in the segmentation module. We compared the
human data and the base model with models that use only the high-level/semantic object cues for the global and the prompted
segmentation (hl-g & hl-p), only the low-level/appearance & motion-based global segmentation and the high-level prompt (ll-g &
hl-p), a low-level/appearance-based prompt either combined with only low-level or with all global cues (ll-g & ll-p, all-g & ll-p), a
model that uses ground truth objects together with the base model uncertainty (gt-obj), and models that use either only low-level or
all global object cues without any prompted object (ll-g & no-p, all-g & no-p).

opposite trend, where the currently attended object is
inspected further because the uncertainty over other
parts of the scene does not drive the exploration there.
For this reason, we find the right trade-off between the
exploration of novel parts and the further inspection of
attended parts at a medium importance of umin = 1

3 .
If we further analyze the temporal IOR effect under

the different variations of uncertainty importance
(Figure 6d), we observe that the model requires
a certain level of uncertainty importance (at least
umin = 1

3 ) to reach the same effect. With too low
importance of uncertainty (umin > 1

3 or “no uncert.”),
the effect is instead inverted, such that saccades in
the same direction are preceded by longer foveation
durations. Hence, incorporating uncertainty into
the model increases the probability of return events
while simultaneously giving rise to the temporal
IOR effect. The capability of accounting for this
effect highlights how uncertainty can replace an IOR
mechanism that is explicitly built into the model to
drive human-like exploration behavior. The uncertainty
of our model is computed based on the different
object cues the model receives to build the object
segmentation of the scene. In the following, we analyze
the influence of these different inputs and how the

resulting object representations affect the simulated
scanpaths.

Model ablation 2: Semantic object cues and
component interconnections form suitable
perceptual units

Our model updates both the current object
segmentation and perceptual uncertainty from the
current image of the scene using different object cues.
The segmentation then defines the perceptual units
in saccadic decision-making, and the uncertainty
influences the likelihood of selecting these perceptual
units. In this ablation, we investigated the extent
to which different object cues in the segmentation
algorithm affect the predicted scanpaths. We compared
different combinations of low-level (basic appearance
and motion) and high-level cues (with semantic/top-
down influence) for both the global and gaze-dependent
object segmentation. The primary scanpath statistics
did not change by much if we replaced the object
sources (Figures 7a and 7b). For simplicity (high
computational cost of the parameter exploration)
and since we are primarily interested in the overall
trends, we used the same model parameters as in the

Downloaded from jov.arvojournals.org on 04/29/2025



Journal of Vision (2025) 25(2):6, 1–33 Mengers et al. 15

base model. Only for the models without a prompted
object segmentation (i.e., in which uncertainty is not
lowered at the current gaze position), we found a new
parameter set for the comparison (see Appendix D for
more details). We compared the resulting scanpaths
with our base model (low- and high-level global
segmentation combined with a high-level prompted
mask, i.e., all-g & hl-p), a model that uses a ground
truth object segmentation (provided as labels in the
dataset, cf. Dataset), and the human scanpaths.

We found that a model that does not use any low-level
object cues but instead relies only on the high-level,
semantic global segmentation and the semantic prompt
(hl-g & hl-p) explored the scene very similarly to the
base model and the human observers in terms of both
the functional categories (Figure 7c) and the temporal
IOR effect (Figure 7d). If, instead, only appearance-
and motion-based segmentations were used as global
object cues (ll-g & hl-p), the exploration behavior of
the model remained close to the human data as long
as foveated segmentations take advantage of high-level
cues. The lack of a global semantic segmentation,
however, led to more exploration of the background
due to the uncertain low-level segmentation and,
thus, made the characteristic dip in the temporal IOR
effect disappear. We also implemented a model that
used exclusively low-level object cues by replacing the
high-confidence prompted object segmentation with an
appearance-based low-level object prompt (ll-g & ll-p).
In this case, the model segmented individual pieces of
clothing based on color when foveating a person. If,
instead, semantics were used, the person, including
their clothes, would be considered a single object. This,
in turn, would lead to a higher number of inspections as
there is more uncertainty within the remaining ground
truth objects. Adding the global semantic segmentation
to the model with low-level prompts had almost no
effect on the scanpath statistics (all-g & ll-p).

We next investigated the influence of the interaction
between saccadic decisions and segmentation. We
removed one of the two directions of these interactions.
First, we replaced the perceptual units generated
by our segmentation component with the ground
truth objects provided by the dataset, while still
computing and using the uncertainty map as in the
base model. As a result, the few labeled objects were
often and reliably foveated, leading to a high amount
of inspections, while the background was explored
much less. In an additional ablation, we removed
the foveated segmentations from our model (all-g &
no-p and ll-g & no-p), using the particle filter for the
global segmentations but making the segmentation
into perceptual units independent of the gaze. Hence,
we removed the ability of the model to actively
resolve uncertainty through saccades. This changed its
exploration behavior considerably: Inspections became
much more frequent, while detection times decreased.

Moreover, we no longer observed any temporal IOR
effect.

In summary, we found that removing low-level object
cues from the segmentation filter does not lead to big
changes in the resulting scanpaths. High-level semantic
segmentation cues, however, were needed to simulate
human-like gaze behavior. In particular, high-level
prompted object cues entailed a temporal IOR effect.
When we removed the ability of the model to reduce
the object uncertainty through saccadic decisions
through the prompted object cue, we observed an
even larger effect on the simulated scanpaths. Even if
the model included a global semantic segmentation,
the uncertainty-driven interaction between the two
components was crucial.

Model extensions: Saccadic momentum
improves saccade angle statistic and
presaccadic attention benefits early object
detections

We have shown so far that our model reproduces
important hallmarks of scanpaths in dynamic
real-world scenes. One instructive metric we have not
yet investigated is the distribution of relative saccade
angles. Importantly, this distribution shows how many
forward and return saccades were made and is therefore
also interesting in the context of spatial IOR, that is, the
reduced probability of returning to a previously visited
location. The human scanpaths in our data show a
strong bias for saccades in the opposite direction relative
to the previous saccades, as shown in Figure 8a. This is
in line with work that showed that return saccades are
much more frequent in complex scenes than expected
from the IOR literature (Smith & Henderson, 2009;
Burlingham, Sendhilnathan, Komogortsev, Murdison,
& Proulx, 2024). Because our model does not explicitly
inhibit return saccades, this behavior is replicated well.
Yet, the base model did not reproduce the human bias
to make saccades in the same direction as the previous
saccades, called saccadic momentum (Anderson et al.,
2008; Smith & Henderson, 2009). Different mechanisms
have been discussed to explain saccadic momentum,
including a continuation of the motor plan and a
visual bias in V4 neurons (Motter, 2018). Although no
such mechanism is implemented in the base model, its
modular implementation makes it easy to account for
the saccadic momentum effect.

We thus extended our base model by introducing a
bias towards forward saccades into the gaze-dependent
visual sensitivity S (see Scanpath simulation), while
keeping all other model parameters the same.
Unsurprisingly, the model with saccadic momentum
reproduced the relative saccade angle distribution
(Figure 8a). Importantly, the previously investigated
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Figure 8. Extending the model through saccadic momentum or presaccadic attention leads to improvements in certain statistics. (a)
Histograms of the change in saccade direction for scanpaths simulated with the base model (blue) and the model with saccadic
momentum (green) compared to the human data (red). Forward saccades with ±0° go in the same direction, while return saccades
with ±180° go in the opposite direction compared to the previous saccade. (b) Dwell time for each individual object averaged across
human observers compared to simulated model scanpaths of the base model (left, blue) or the model with presaccadic attention
(right, purple). We distinguish between the time objects were foveated in the first 30 frames (marked with x, dotted regression line)
and in the first 90 frames (maximum number of frames with objects; marked with o, solid regression line). A perfect prediction would
correspond to the data points for all objects lying on the dotted line with slopem = 1 and intercept y0 = 0. See Figure F2 in Appendix
F for the aggregated scanpath statistics analogous to Figures 6 and 7 of the extended models.

statistics of human exploration behavior remained
largely unaffected (see Figure F2).

In a second extension, we included the well-
established finding of presaccadic attention shifts
(Deubel & Schneider, 1996; Rolfs, Jonikaitis, Deubel, &
Cavanagh, 2011) into the model. We implemented this
by prompting objects whose evidence exceeded 30% of
the DDM threshold θ and setting the sensitivity map S
for these objects to 1, just as if they were foveated (see
Figure F1b). Again, we added this component to the
base model while keeping all other model parameters
unchanged. Effectively, this provides the model with
additional saliency information at the most likely
saccade targets, which should help to better prioritize
between them. Therefore, we expected this presaccadic
attention model to be more consistent in exploring
the same objects as the human observers than the
base model. We did not see a considerable change
in the correlation of the overall object-specific dwell
time when considering the whole duration for which
object masks are available (90 frames; m = 0.67, y0
= 139.6, r2 = 0.55 for the base and m = 0.72, y0 =
126.6, r2 = 0.56 for the presaccadic attention model;
Figure 8). In an exploratory analysis where we only
considered the objects foveated in the first second,
which in human scanpaths primarily corresponds with
detections of the most salient objects (cf., Parkhurst,
Law, & Niebur, 2002; Donk & Van Zoest, 2008), we
did see an improvement in the correlation through this
model extension (30 frames; m = 0.47, y0 = 101.1, r2 =
0.36 for the base and m = 0.56, y0 = 76.9, r2 = 0.45 for
the presaccadic attention model). We predict that this
attentional benefit would become more pronounced if

we were to fit all free model parameters again for the
presaccadic attention model and/or specifically fit the
models to reproduce the object-specific dwell times.

Finally, we accounted for the simplified assumption
that a saccade is executed immediately after the decision
threshold is reached. It has been shown that new visual
information does not influence the movement plan
anymore in the final 50 to 70 ms of the preceding
fixation (Hooge & Erkelens, 1999; Ludwig, Gilchrist,
& McSorley, 2005). We implemented such a saccadic
dead time in our model by prolonging each foveation by
50 ms, during which no evidence is accumulated. After
this dead time, the saccade is executed as in the base
model. Without fitting the parameters again, we only
lowered the decision threshold θ = 4.0 (base model)
to θ ′ = 3.5 to account for the otherwise 50 ms longer
foveation durations, and keep all other parameters as in
the base model. We find that the inclusion of this dead
time does not make a qualitative difference on any of
the investigated metrics (see Figure F2).

Discussion

We presented a model for object-based attention and
gaze behavior in complex dynamic scenes that builds on
a previous model for saccadic decision-making (Roth
et al., 2023) and an object segmentation model for
interactive perception in robotics (Mengers et al., 2023).
The active interconnection between the two model
components resembles an algorithmic information
processing pattern from robotics, AICON (see Battaje
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et al., 2024), which we further examine in Using an
information processing pattern from robotics. Prior
to this, we discuss the results of our study (Summary
and evaluation of the results) as well as the limitations
and advantages of our approach (Advantages and
limitations of our model). In particular, we elaborate
on the conclusions we can draw about uncertainty as
a driving factor for visual exploration (Uncertainty
drives exploration), and what we can learn from the
model about the perceptual units of visual attention
(Perceptual units for object-based attention).

Summary and evaluation of the results

Our scanpath model successfully replicates key
aspects of human visual exploration in dynamic
real-world scenes. Qualitative (Qualitative scanpath
analysis) and quantitative (Aggregated scanpath
statistics) comparisons between simulated and human
gaze behavior demonstrate that the model closely
resembles human behavior and accurately reproduces
scanpath statistics. We selected the model parameters
such that the simulated scanpaths fit the foveation
duration and saccade amplitude statistics of human
eye-tracking data. Without further fitting, the model
captures meaningful exploration patterns on unseen
videos, including the temporal balance between
detecting new objects, inspecting currently foveated
objects, and returning to previously viewed areas.
This balance is primarily driven by the influence of
uncertainty on saccadic decisions, which also leads
to a temporal IOR effect without the need for an
explicit implementation of an IOR mechanism (see
Model ablation 1: Uncertainty drives exploration).
We further investigated how different object sources,
such as low-level and high-level cues, influence
scanpaths and found that semantic object cues played
a crucial role in obtaining human-like exploration
(see Model ablation 2: Semantic object cues and
component interconnections form suitable perceptual
units). Additionally, model extensions incorporating
psychophysically uncovered mechanisms like saccadic
momentum and presaccadic attention have the potential
to further align the model’s resemblance to human
behavior in terms of saccade angle distributions and
object dwell time (see Model extensions: Saccadic
momentum improves saccade angle statistic and
presaccadic attention benefits early object detections).

Combined, the scanpath evaluation metrics in this
work offer a comprehensive view of how well the
model mimics human gaze behavior by assessing both
temporal and spatial dynamics in visual exploration.
Ideally, a single metric would capture all aspects of
the simulated behavior, but currently, no established
evaluation metric exists for scanpaths in dynamic
scenes. For models with a readily computable sequential

likelihood function, data assimilation has shown
promise as an approach for both parameter fitting
and model evaluation (Schütt et al., 2017; Schwetlick
et al., 2020; Seelig et al., 2020; Engbert et al., 2022).
Although it might be conceivable to approximate the
spatiotemporal likelihood function for our model’s
scanpaths and update them frame by frame, this
approach would be computationally infeasible. In
addition to recomputing the likelihood for every frame,
it is unclear how to extend the point processes used in
the sequential likelihood approach to include smooth
pursuit events (for a detailed discussion on additional
scanpath evaluation metrics in dynamic scenes, see Roth
et al., 2023).

Advantages and limitations of our model

The here presented model still has many of the
simplifications of our previous framework for Scanpath
simulation in Dynamic scenes (ScanDy) (Roth et al.,
2023). Importantly, we assume that attention spreads
instantaneously and uniformly across objects and
that saccades are always precisely executed without
attempting to model the saccade programming and
oculomotor control. Although we focus on scene
segmentation and scanpath simulation in the current
work, our modular implementation should make it
easy to further extend the model in that direction.
The current extensions of saccadic momentum and
presaccadic attention both only required the addition
of a few lines of code.

So far, we have only modeled scanpaths during free
viewing, that is, observers had no task instructions.
In the future, we plan to apply the same modeling
approach to simulate scanpaths in complex dynamic
scenes during goal-directed tasks, such as visual search
and scene memorization. We expect that additional
top-down attentional control during these tasks can
be incorporated into the modeling by adapting the
feature map F (see Scanpath simulation, F currently
represents only visual saliency) and tuning the model
parameters. For example, we would anticipate that our
model could already reasonably simulate scanpaths
for scene memorization through a down-scaling of the
importance of F through fmin and visual search through
the inclusion of a target similarity map in F′. In both
cases, the threshold of the DDM θ should be lowered to
account for typically shorter foveation durations under
such task conditions (Rayner, 2009).

The important improvement over the existing
ScanDy framework is the active interconnection
with object segmentation. Through this interaction,
the model becomes image computable, that is, we
do not have to define what constitutes an object a
priori, but the object representations change based
on the scanpath. The implementation of the object
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segmentation as a recursive Bayesian filter leads to
a serial dependence of the segmentation, using both
prior and present object information to represent the
scene (Fischer & Whitney, 2014). Furthermore, the
segmentation module automatically provides us with
an uncertainty map, which depends on the prior and
present gaze position. We show that, through the
automatic reduction of uncertainty as a consequence of
saccadic decisions, this uncertainty map is well-suited
to drive saccadic exploration behavior during dynamic
free-viewing scenes.

Importantly, when we say we have a mechanistic
model, we refer to attentional mechanisms in the sense
of algorithmic principles and do not make claims on the
biological or implementational level (cf., Marr, 1982).
Although there is evidence for Bayesian updating in
the brain (Knill & Pouget, 2004; Ma, Beck, Latham,
& Pouget, 2006), even in the form of a neural particle
filter (Kutschireiter, Surace, Sprekeler, & Pfister, 2017),
we want to argue more conceptually for principled ways
of information processing, independently of neural
implementation. For example, there is evidence of
bidirectional information exchange between different
components of perceptual processing, similar to
the exchanges between our components for object
segmentation and saccadic decision-making. Such
exchanges have been observed not only between
different hierarchical levels of processing (Ahissar
& Hochstein, 2004), but also laterally between the
processing of different cues (Livingstone & Hubel,
1988) or even between separate sensory modalities
(McGurk & MacDonald, 1976).

In our model, we recursively update the segmentation
in the object component and the evidence in the
saccadic decision component. Hence, the model
makes use of the temporal consistency of the visual
environment, which has also been observed and
described in human behavior during visual search (e.g.,
Niemi &Näätänen, 1981; Kristjánsson, Sigurjónsdóttir,
& Driver, 2010) and object perception (Blake & Yang,
1997; Liu, 2008). For this segmentation, we aimed to
combine and compare object cues based on low-level
appearance (Schyns & Oliva, 1994), motion (Reppas
et al., 1997), and semantics (Neri, 2017), which have
been shown to play a role in the human visual system.
Although the recursive Bayesian integration of these
object cues is mechanistically plausible, the way our
model computes these inputs is certainly different from
how the visual system might infer them. The computer
vision algorithms used to obtain these cues, as described
in Estimating object segmentation and its uncertainty,
and particularly the semantic segmentation, on which
we provide further details in Appendix B, were not
chosen based on their biological plausibility but rather
for how well their results represent the respective object
cues as uncovered in psychophysical experiments.
Similarly, the prompted semantic segmentation of the

currently foveated object does not use a more plausible
foveated input frame, since this would be outside the
training distribution of the algorithm. Instead, we use
a higher resolution of the input frame compared to
the pre-attentive global segmentations, prompt the
model at the current gaze position (see Appendix
B for details), and include the resulting mask with
higher confidence into the particle filter. An additional
foveal benefit plays a role in the subsequent saccadic
decision-making process, where the combination of
global scene features F, and the gaze-dependent visual
sensitivity S approximates the incoming information
at any point in time. Our model is hence plausible on
the level of attentional mechanisms and used object
cues, but not on the level of how these are currently
implemented.

The modular and mechanistic design of the model
allows us to explore essential hypotheses about attention
and gaze behavior in dynamic scenes—which can be
challenging to test experimentally. By studying the
model’s behavior, we can generate hypotheses that can
later be tested in eye-tracking experiments specifically
designed for this purpose. The model offers complete
control over its internal processes, allowing us to
perform various ablation studies, including those on
latent variables, which are usually difficult to assess
in behavioral experiments. In the interpretation of
our model ablation results, we assume that the other
parts of our model are mechanistically similar to the
human visual system. This strategy allows us to deduce
how the investigated mechanism (i.e., the inclusion
of uncertainty for gaze guidance or the formation
of perceptual units for object-based attention)
best interacts with the other model components
to produce human-like gaze behavior in dynamic
scenes.

In our implementation of attentional mechanisms,
we focused on what we consider the core components
of the vast literature on attentional guidance. In
theory, including other mechanisms may change
the interplay between model components and, as a
result, the interpretation of our ablations. In practice,
however, we find that— although our extensions of
the model improve certain statistics of the simulated
scanpaths—they do not qualitatively change the
model’s overall behavior. While this is not a guarantee
that it will be the same for future model extensions,
it increases our confidence in the robustness of our
model and its predictive power for mechanisms of
visual attention. Therefore, we can develop hypotheses
about the inner workings of the human visual system
by systematically examining how our model produces
certain behaviors. These hypotheses can then be tested
in psychophysical experiments guided by the model.
In the following sections, we discuss two insights from
the model and how they may inspire psychophysical
experiments.
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Uncertainty drives exploration

The connection between active exploration behavior
and the reduction of perceived uncertainty of the
environment is well established in the literature
(Renninger, Verghese, & Coughlan, 2007; Sullivan,
Johnson, Rothkopf, Ballard, & Hayhoe, 2012; Friston,
Adams, Perrinet, & Breakspear, 2012). Gottlieb et
al. (2013) summarized that “information-seeking
obeys the imperative to reduce uncertainty and can be
extrinsically or intrinsically motivated” (p. 586) and that
“the key questions we have to address when studying
exploration and information-seeking pertain to the
ways in which observers handle their own epistemic
states, and specifically, how observers estimate their
own uncertainty and find strategies that reduce that
uncertainty” (p. 586). It is, however, not obvious how
uncertainty should be measured and quantified in an
image-computable model of visual attention.

In this context, it is important to clarify again what
we mean by uncertainty since the term can refer to
many things. Our model specifically considers the
uncertainty of the boundary between potential objects,
both about their existence and exact location, but not
about the object’s identity or other possible features (for
more details, see Appendix A). For example, if an object
in the periphery moves, this typically would increase
the uncertainty estimate in our model. One could
argue that the additional motion cue should reduce
the uncertainty about the shape of the object. Indeed,
this intuition is reflected in our model since the input
from the motion segmentation will clearly show the
object. However, the overall uncertainty of the object
might still increase because the exact position, shape, or
state of the moving object might change, which would
be reflected in conflicting object measurements from
different sources or in a strong deviation from the prior
belief. This prior belief is calculated as the segmentation
of the previous frame, shifted by the optical flow.

Our results show that including the uncertainty
map of the object segmentation module as a driving
factor in the saccadic decision-making process leads
to human-like simulated scanpaths. The weight of
the uncertainty map for the decision-making process,
parameterized through umin, strongly influences the
ratio between foveation categories, in particular, the
frequency at which objects are inspected. The prompted
high-confidence object segmentation typically leads to
a low uncertainty at the current position, encouraging
further exploration of the scene and more return events
for a strong influence of uncertainty (low umin). If
the influence is weak (high umin), the gaze-dependent
spread of attention leads to a strong tendency to
further inspect objects with high salience. Interestingly,
the umin parameter also influences the strength of the
temporal IOR effect. Despite returns occurring more
often with a lower umin, the uncertainty of recently

foveated objects is typically reduced, thereby slowing
down the evidence accumulation process. Although
IOR is generally conceived as a viewing bias that both
reduces (spatial) and delays (temporal) return events,
our uncertainty-guided model captures not only the
temporal IOR but also the spatial “facilitation of
return” (Smith & Henderson, 2009) observed in the
human scanpaths.

Most mechanistic scanpath models require an explicit
implementation of IOR (cf. Itti, Koch, & Niebur, 1998;
Zelinsky, 2008; Schwetlick et al., 2020; Roth et al., 2023)
to avoid being bound to the objects or locations with the
highest salience (Itti & Koch, 2001). Our model takes a
different approach, similar to previous computational
models that have incorporated uncertainty-based
strategies, where exploration is driven by high variance
or entropy (Cohn, Ghahramani, & Jordan, 1996;
Rothkopf & Ballard, 2010). It is closely related to the
principle of information maximization, which has
been applied before to simulate eye movements in
static scenes (Lee & Yu, 1999; Renninger, Coughlan,
Verghese, & Malik, 2004; Wang, Chen, Wang, Jiang,
Fang, & Yao, 2011). Where our model is uncertain is
also closely related to “Bayesian surprise,” which was
introduced by Itti and Baldi (2009) in the context of
scanpaths as a measure for how eye movement data
affects differences between posterior and prior beliefs
of an observer about the world. These models also do
not require an explicit IOR implementation, since there
is little information to be gained by revisiting already
foveated parts of the scene. However, when observing
dynamic real-world scenes, further inspections and
returns are frequent, and defining an information
maximization or uncertainty-driven approach that can
account for this behavior is not trivial. In our model, we
do not need a separate estimation of the uncertainty,
since it is a natural by product of the AICON-ic way in
which we obtain the object segmentation.

Perceptual units for object-based attention

Object-based attention is a well-established concept
that has been thoroughly investigated in a large
variety of experimental paradigms (Scholl, 2001;
Peters & Kriegeskorte, 2021; Cavanagh et al., 2023).
However, it remains unclear what constitutes a visual
object in this context (Spelke, 1990; Scholl, Pylyshyn, &
Feldman, 2001; Feldman, 2003; Palmeri & Gauthier,
2004; Cavanagh et al., 2023). Our model allows us to
systematically vary the input sources (e.g., semantic,
motion-based, or appearance-based object cues) used
for the formation of the scene segmentation, which
defines the perceptual units on which the object-based
attentional selection process operates. Under the
assumption that our implementation of saccadic
decision-making mechanisms is similar to the human
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visual system, we expect that the object cues that lead to
more human-like scanpaths are also the cues primarily
used for saccadic decision-making in humans.

Our results suggest that attentional guidance
primarily relies on semantic object cues in dynamic
scenes. Only models that used the semantic cues both
for the global and prompted scene segmentation showed
the temporal IOR effect and could reproduce the
balance between foveation categories seen in humans
(cf. Figure 7). This result is consistent with evidence
for global semantic understanding of natural scenes
(Neri, 2017; Cavanagh et al., 2023). As expected, the
model scanpaths also became less human-like if we
replaced the prompted semantic segmentation at the
gaze position with an appearance-based, low-level
object cue prompted at the fixation position (all-g & ll-p
in Figure 7, overestimating the amount of inspection
and not showing the temporal IOR effect). This model
corresponds to the assumption that a foveated object
would get more finely segmented (e.g., a t-shirt, which
was previously part of a person, becomes its own object
when foveated). However, we do not see support for
this assumption since the simulated scanpaths based
on it were less plausible compared to the base model.
Removing the global low-level object cues (hl-g & hl-p
in Figure 7) did not impact the simulated scanpath
statistics in any major way. There is ample evidence
for the brain using appearance- and motion-based
object cues to segment complex dynamic scenes (Schyns
& Oliva, 1994; Reppas et al., 1997; Von der Heydt,
2015). Based on our results, however, we would argue
that low-level object cues do not play an important
role in the formation of the perceptual units on which
object-based attention is operating.

These results could be tested experimentally by
probing the visual sensitivity within or outside the
currently foveated object as predicted by the model.
A promising method to study this would be to test
the response to gaze-contingent narrow-band contrast
increments during free viewing (Dorr & Bex, 2013).
Under the assumption of a delayed response to probes
outside an attended object (Egly et al., 1994; Scholl,
2001) and in combination with the predictions from
our model, this would allow us to disentangle the object
cues used in the visual system to construct perceptual
units for object-based attention.

Using an information processing pattern from
robotics

Our model is based on the robotics-inspired
information processing pattern AICON, which
structures information processing at a mechanistic
level to generate adaptive behavior. Our results and
recent studies show that AICON is not limited to
robotics, but is applicable to domains like human

perception of visual illusions (Battaje et al., 2024) or
even collective behavior (Mengers, Raoufi, Brock,
Hamann, & Romanczuk, 2024), where systems must
integrate uncertain, interdependent inputs to make
perceptual decisions. Here, we present our evidence
for how AICON’s algorithmic patterns address the
specific challenges of human vision, which show strong
parallels to those in robotics. Based on this evidence, we
then provide a “recipe” for building AICON-ic models
of other perceptual processes.

Building a model with AICON means constructing
a system of recursive components that interact
through actively modulated bidirectional connections
(active interconnections). As discussed for our model in
Advantages and limitations of our model, there is ample
evidence for recursive updating in human perception.
These recursions within perceptual processes—often
implemented in a Bayesian way—are critical for
resolving ambiguous inputs, whether from sensory
neurons or a robot’s camera. For example, recursive
processing turns depth perception, a nearly impossible
task when attempted with a single image, into a
trivial one by incorporating motion parallax. Active
interconnections between components further refine
perception, because they can share relevant information
extracted through other means with each other. In
integrating cues in this way, perception becomes more
robust, as seen in robotics (Martín-Martín & Brock,
2022; Mengers et al., 2023). But this goes beyond simple
one-directional cue integration: Because each recursive
component remains uncertain, it should use all available
information from its related components to reduce its
uncertainty. Active interconnections are bidirectional
and the conveyed information between components
needs to adapt to changing uncertainties to ensure an
information flow from more to less certain components
at all times (active modulation). In our model, the active
interconnection between the object segmentation and
saccadic decision-making module leads to human-like
visual exploration behavior. Likewise, Battaje et al.
(2024) have shown that active interconnections between
color and shape perception and between luminance
and motion perception enable models to replicate the
human perception of visual illusions while accounting
for individual variability.

We believe AICONwill be transferable to other vision
processes. For those interested in building AICON-
inspired models, we offer both our code (on GitHub:
https://github.com/rederoth/AICONic_ScanDy)
and suggest a general three-step recipe: (1) Identify
key perceptual processes or representations likely
to contribute to the high-level process of interest.
Build a recursive model for each, ideally one that
estimates uncertainty over its representation, and
verify each component’s behavior in isolation using
controlled inputs. (2) Define and implement active
interconnections between components based on possible
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interdependencies, modulating these connections
based on component states and uncertainties. Add
connections incrementally, observing and tuning
system behavior to align with expected outcomes.
(3) Once fully connected, observe how behaviors
emerge from component interactions. Experiment with
ablating connections or adjusting parameters to refine
alignment with experimental data or to generate new
predictions, such as individual variability in perceptual
processes.

By applying this recipe, AICON offers a versatile
framework that fosters knowledge exchange across
disciplines studying behavior, like robotics and vision
science. Although behaviors are very different on a
lower level (how computation is exactly performed)
and a higher level (the exact ecological niche and its
constraints), the common mechanistic challenges—
integrating uncertain information and adapting
across contexts—often result in convergent solutions.
Therefore, we believe that studying mechanistic
information processing patterns like AICON across
disciplines offers a promising path toward a more
unified and deeper understanding of the fundamental
drivers of behavior.

Conclusion

We developed and evaluated a model for object-based
attention and gaze behavior in real-world dynamic
scenes. By integrating saccadic decision-making
mechanisms with an object segmentation framework,
our model successfully simulates human-like scanpaths.
This integration, an implementation of the AICON
information processing pattern from robotics, enables
the model to progressively refine its object segmentation
through active exploration, while uncertainty over that
segmentation guides the scanpath.

The modular design of our model allows for
systematic hypothesis testing and ablation studies,
providing a valuable tool for exploring the mechanisms
of visual attention. We found that the uncertainty in
object segmentation plays a crucial role in guiding
human-like visual exploration. Instead of relying on
an explicit IOR mechanism, we propose the active
reduction of uncertainty through saccadic decisions
as the driving mechanism of scene exploration.
Furthermore, our results suggest that attentional
guidance primarily relies on semantic object cues,
highlighting the importance of high-level scene
understanding in active vision. By capturing the
interplay of segmentation and saccadic decision-
making, our model highlights the power of mechanistic
information processing patterns like AICON,
encouraging future research to explore information
processing patterns that transcend disciplinary
boundaries.

Keywords: scanpath simulation, object-based
attention, probabilistic image segmentation, active
interconnect, eye movement, active vision
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Appendix A: Uncertainty over
object segmentation

We estimate the uncertainty over object segmentation
using a particle filter, as described in Estimating object
segmentation and its uncertainty. This uncertainty
reflects the ambiguity in the existence and location of
boundaries between objects and not the identity or
category of individual objects. Given its key role in
our model, we provide an intuitive explanation of this
uncertainty and how it is updated on a frame-by-frame
basis, illustrated with an example sequence in Figure
4. We visualize the model’s uncertainty U′ both as an
average across the entire scene (Figure A1b) and as
an average over the ground truth objects in the video
(Figure A1a, with the ground truth objects shown in
Figure A1c). For individual ground truth objects, we
show how gaze position affects object uncertainty for
a single simulated scanpath over the first 90 frames
with available ground truth. For the global uncertainty
across the scene, we average over 10 stochastic scanpath
realizations to observe the general relationship between
uncertainty and scene content, independent of the
specific scanpath.

After the initial pre-attentive global segmentation,
the uncertainty for different objects varies based on
visual ambiguity in appearance and semantic cues (cf.,
Figure A1a). Uncertainty for non-foveated objects
depends on factors like motion or occlusion. However,
if an object is foveated (e.g., the red object at frame
50), its uncertainty rapidly decreases to nearly the
minimum (umin = 1/3). When gaze shifts away from
this object (e.g., in frame 58), its uncertainty rises
again. This dependency on various factors, combined
with diverse uncertainties across objects, means that
average uncertainty over the scene remains relatively
steady throughout the sequence (cf. Figure A1b).
This stability arises because we are not estimating
uncertainty over object identity, which would remain
low once identified, but over object boundaries, which
can quickly become ambiguous again as objects move,
their visible parts change, or occlusions occur. If there
is no camera movement and the objects in the scene
remain mostly static, the overall uncertainty decreases
(cf., the green intervals in Figure A1b, where dancers
either slowly rotate or have a stop-step and thus move
less).

As a result, the global uncertainty remains on a
similar level over time as long as there are ongoing
scene changes in the video. Hence, we did not expect
a strong effect on the temporal development of
uncertainty-related effects. To test this, we compared
the temporal IOR effect for the first and second half of
the videos (frames 0–149 and frames 150–299) for both
the base model and the human data, as shown in Figure
A2. The general trend of a temporal IOR effect remains
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Figure A1. Uncertainty in our model represents where the boundary of objects is currently ambiguous. We visualize the uncertainty
U′ of our model for the same scene as in Figure 4. We show the uncertainty for individual ground truth objects in (a) with the ground
truth objects of that scene shown for the initial frame in (c). The uncertainty of non-foveated objects (thin gray lines) varies for
different objects and over time, but after a saccade towards an object (dashed colored line indicates a saccade towards the same
color object) uncertainty for that object (thick colored line) rapidly reduces and remains low until the gaze moves away. (b) Global
uncertainty (averaged over 10 scanpaths with standard deviation) remains in the same regime but reduces if there is less motion in
the scene (green time intervals), since ambiguity can be resolved while less new ambiguity arises from motion.

Figure A2. Temporal IOR effect during the first and second half of presentation time. (a) Evaluation of the base model with the result
of the full duration, as shown in Figure 5d, compared to an evaluation of foveations only during the first (frames 0–149) or second half
(frames 150–299). (b) Same as (a) for human data.

visible for both halves, only with higher variability due
to the smaller number of samples. However, the average
foveation durations are shorter for the first half of
frames than for the second for both our model and the
human data. In the model, this must be the result of
changes in uncertainty, since the salient feature map F′
is always normalized and the visual sensitivity S does
not change in magnitude. However, because the global
uncertainty also does not change drastically, this is
most likely a result of the distribution of uncertainty
compared with the distribution of saliency. The first
saccades favor objects with both high saliency and
uncertainty, leading to a reduction of uncertainty for

these objects. Due to this reduced uncertainty, evidence
for these objects that initially drive a fast sequence of
saccades is then accumulated more slowly, leading to
overall longer foveation durations.

In summary, uncertainty in our model represents
where the boundary of objects is currently ambiguous.
This can fluctuate depending on the scene content, but
by foveating on an object, the model ensures a lower
uncertainty for that object. However, uncertainty for
objects can rise after gaze shifts away, leading to a
relatively stable amount of global uncertainty over the
scene that distributes according to scanpath history and
scene content over time.
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Appendix B: Semantic and foveated
segmentation from prompt-based
models

We use a state-of-the-art data-driven model (Kirillov
et al., 2023) to generate both the pre-attentive global
segmentations and the segmentations of the currently
foveated object, as described in Estimating object
segmentation and its uncertainty. This family of
models is fundamentally based on the formulation of
segmentation as a prompt-based task. Here, we give
a high-level explanation of this task formulation and
how such models are trained with vast amounts of data
to provide an intuition on how the semantic object
cues were obtained. For further details on the general
concept, refer to Kirillov et al. (2023), and for details
on the specific derived models used here, see Ke et al.
(2023) and Zhao et al. (2023).

Traditionally in computer vision, segmentation has
been formulated as the task of generating a dense
map for a given image that separates it into regions,
often based on known object classes. Kirillov et al.
(2023) introduced an alternative formulation in which,
given a prompt relating to one object in the image (a
point, a bounding box, text, or a dense mask), the
mask covering that object needs to be identified. For
this formulation of the segmentation task, a learnable
model consists of encoders for the image as well as
all possible prompts and a decoder that, given the
encoded image and prompt, generates a mask. These
encoders and decoders are usually transformer-based
and can then be trained in unison based on a vast
amount of data of labeled segmentations collected
from various sources (Kirillov et al., 2023). The new
task formulation, moreover, allows leveraging labeled
segmentations in multiple ways, since one image can be
used for all types of prompts, as well as variations of the
same prompt, e.g., by shifting the prompt point within
the labeled mask of that object. Thus, the amount of
training samples increases and a model that can solve a
variety of segmentation tasks can be learned.

We use such learned models with prompt-points
to generate both pre-attentive global semantic
segmentations and the segmentations of the currently
foveated object. Let us give an example based on Figure
1 starting with the more intuitive segmentation of the
foveated object: the current gaze acts as prompt-point
that currently lies on the face of the person in the
foreground, and thus an appropriate mask (the
segmentation of the foveated object) contains the entire
person. Note that alternative appropriate masks might
only be the person’s face or maybe even only the specific
part of the face the prompt is on, for example, the left
eye. Hence, models for this task do not output just one
mask, but a weighted set of masks from which the user

can select (we simply use the highest weighted mask
throughout this work). This segmentation procedure
is in itself not foveated, because it leverages the entire
image in a spatially invariant manner during encoding
and only leverages the prompt-point during the final
mask construction. To generate a global semantic
segmentation of the scene with such a model, instead
of passing one point, we pass a grid of points to
obtain a set of masks that can be combined into
one segmentation (cf., the semantic segmentation
in Figure 2).

Appendix C: Further details on the
particle filter implementation

We track a belief over scene segmentation by
combining different measurements over time within
a particle filter, as we describe in Estimating object
segmentation and its uncertainty. Here, we want to
give further details on its implementation, especially
regarding the computation of each particle’s weight
and the matching process for segmentation IDs when
marginalizing the particle set into a single object
segmentation.

Appendix C1: Particle weighting

When computing the weight of each particle
(Equation 1), we weigh it according to each
segmentation cue. To do so, we first compute the
unnormalized weights w̃

[i]
t (zt ) according to each cue zt,

using a distance function between two segmentations
(Equation 13). We can determine this distance between
two segmentations as the sum of the distances of each
boundary pixel in one segmentation to the closest
boundary pixel in the other, which is easily computable
using the distance transform disttransform(s) of the
boundary image s of a segmentation. Because this
distance is non-symmetric, we, however, need to use it
in both directions (Equation 14 where W and H are the
width and height of the image frame).

w̃
[i]
t (zt ) = 1

d (s[i]t , zt )
(13)

d (s1, s2)=
W∑
x=1

H∑
y=1

(
(s1)xy · (disttransform(s2))xy

+(s2)xy · (disttransform(s1))xy
)

(14)

To determine the overall weight of a particle
according to the set of all cues Zt at time t, we combine
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the unnormalized weights w̃
[i]
t (zt ) for each cue zt as

in a product, as shown in Equation 15, where η is
a normalizing factor between particles. However,
as the cues have different amounts of information
and thus confidence, we combine with an additional
exponential importance factor αz. These importance
factors were set during some initial explorations on the
dataset to produce satisfactory segmentations as shown
in Table D1.

w
[i]
t (Zt ) = 1

η

∏
zt∈Zt

(
w̃

[i]
t (zt )

)αz
(15)

Appendix C2: Matching segmentation IDs for
consistency over time

We obtain a single segmentation from the particle
set during each iteration to inform saccadic decision-
making, as we have described in Estimating object
segmentation and its uncertainty. To keep the IDs of
this segmentation consistent, we use a variation of
the Hungarian algorithm (Hopcroft & Karp, 1973) to
match object IDs between object segmentations. To do

so, we must determine the matching weights wm(m1,m2)
between the mask m1 of an object in one segmentation
and the mask m2 in another. We use the well-established
intersection over union IOU(m1, m2) metric to measure
their overlap:

IOU(m1,m2) = m1 ∩ m2

m1 ∪ m2
. (16)

However, if we only consider these overlaps between
the current and last segmentation, some object IDs
will get lost due to perceptual uncertainty. Hence, we
consider the last 10 segmentations, but discount their
importance with the factor β. We compute resulting
matching weights wm(m1, m2) that the mask m1 in the
current segmentation should have the same ID as the
mask m2 in each of the last T = 10 segmentations
following

wm(m1,m2) =
T∑
t=0

IOU(m1,m2,(T−t) ) · β (T−t), (17)

and then match the IDs using maximum weight full
matching in bipartite graphs (Jonker & Volgenant,
1987), allowing for new IDs if no existing ID can be
matched.

θ = 4.0 Decision threshold of the drift-diffusion model.
s = 0.4 Decision noise of the drift-diffusion model.
umin = 1/3 Parameter to rescale the uncertainty map U to U′ ∈ [umin, 1]. Increasing umin, reduces the importance

of uncertainty in our model.
fmin = 0 Parameter to rescale the salience map F to F′ ∈ [fmin, 1]. Increasing fmin, reduces the importance of

salience in our model.
σ S = 7 dva Standard deviation of the isotropic Gaussian GS = 1

2πσ 2
S
exp

(
− (x−x0 )2+(y−y0 )2

2σ 2
S

)
that we use to model

visual sensitivity.
N = 50 Number of segmentation particles. Higher number improves estimation of both segmentation and

uncertainty, but heavily increases computational load. We find that N = 50 is already sufficient,
given the direct insertion of regions to prevent divergence.

αappearance = 0.4 Importance factor of the appearance segmentation to determine the weight of each particle.
αmotion = 0.05 Importance factor of the motion segmentation to determine the weight of each particle. It is set

much lower than others since the motion segmentation only provides information about some
parts of the scene, while also being noisy.

αsemantic = 1.0 Importance factor of the semantic segmentation to determine the weight of each particle.
αfoveated = 0.6 Importance factor of the foveated segmentation to determine the weight of each particle. It is lower

than for the semantic segmentation, since it only provides information on part of the scene, while
having in principle the highest confidence.

rscale,foveated = 1.0 Scale factor of the input resolution for the foveated object segmentation.
rscale,other = 0.35 Scale factor of the input resolution for all other segmentation cues. They are downsampled to model

lower-confidence information.

Table D1. Parameters of our model. We show their settings for our base model, with the parameters that are fitted for different
versions of the model in bold.
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Appendix D: Parameter exploration

We found appropriate parameter values through
extensive grid searches in a four-dimensional parameter
space, as described in Metrics and parameter fitting. To
make the computational cost of the grid search feasible,
we fixed all parameters except for the decision threshold
θ for the DDM, the DDM noise level s, and the scaling
parameters for the importance of the uncertainty umin
and salient scene features fmin. All free and fixed model
parameters are described in Table D1.

We used 10 videos from our dataset as a training set
(33 for testing) and generated 5 scanpaths stochastically
for each video and parameter configuration. To confirm
that five scanpath realizations were sufficient to estimate
the model’s free parameters reliably, we assessed the
variability of the KS statistic over different numbers
of realizations. For this, we simulated for each video
in the training set 30 scanpath realizations using the
base model parameters. For each number N ∈ [2, 29],
we then randomly drew 25 sets of size N out of the
30 realizations and calculated the KS statistic for each
set. The standard deviation of the KS statistic across
the 25 sets for each number of stochastic realizations
N is shown in Figure D1. We used the difference in
KS statistic between the two best-fitting parameter
sets as a reference value and found that with five
realizations, the KS statistic’s standard deviation was
already below that difference. Increasing the number of
realizations beyond five only slightly reduced variability.

Therefore, we used five stochastic scanpath realizations
to reduce the computational cost of the grid search.
The model’s strong generalization from training to test
set throughout our results validated this approach.

We first ran a coarse parameter grid exploration
for the parameters θ ∈ [2, 3, 4, 5, 6], s ∈ [0.1, 0.2,
0.3, 0.4], umin ∈ [0, 1

10 ,
1
5 ,

1
3 ,

1
2 ], and fmin ∈ [0, 1

10 ,
1
5 ,

1
3 ].

Around the best-performing parameters, we performed
a finer grid search in θ and s, as shown in Figures D2
and D3. We did not consider parameter sets with s >
0.4 because previous model explorations have shown
that the simulated scanpaths for higher noise levels are
more likely to explore the background or objects that
are not often foveated by human observers. As the main
indication for noise-driven scanpaths, we took a lower
correlation of the object dwell time between simulated
and human scanpaths, as it is shown in Figure 8b, which
in fact decreases for models with s > 0.4.

To ensure a fair comparison between models in
our ablation studies, we run additional parameter
explorations for themodels where the foveation duration
and saccade amplitude change considerably compared
to the base model with the parameters in Table D1.
For the model without uncertainty contribution (no
uncert. in Figure 6) we set U′ = umin, resulting in a
model with θ = 3.0, s = 0.3, fmin = 0, umin = 1

3 having
the lowest mean of KS statistics DFD and DSA across
the four-dimensional grid of free parameters. When
investigating the influence of different object cues,
we explored a fine parameter grid fmin = 0, umin = 1

3
for better comparability with the other models. This

Figure D1. To ensure a reliable estimation of the model’s free parameters on the training set, we compared the variability of the KS
statistic for the base model across different numbers of stochastic scanpath realizations to the difference between the two best-fitting
parameter sets. Initially, adding more realizations significantly reduced the standard deviation, bringing it below the difference in KS
statistic between the best-fitting parameter sets. Beyond this point, additional realizations only gradually reduced variability.
Therefore, we selected 5 stochastic scanpath realizations per video to fit our model parameters.
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Figure D2. The distribution of foveation durations is one criterion to determine model parameters within the four-dimensional grid of
free parameters. Each dot-tuple characterizes the deviation of the median (higher) and mean (lower dot) foveation duration of
simulated scanpaths compared to the human ground truth (GT) in the training set (10 videos; 5 random seeds each). Brighter dots
indicate more suitable parameters. Circles mark the chosen parameter sets for each value of umin, which we subsequently analyzed in
detail as shown in Figure 6.

resulted in parameter values of θ = 4.0, s = 0.4 for
the model using ground truth objects (gt-obj in Figure
7), θ = 5.5, s = 0.4 for the model with all global
object cues, but without a prompted object (all-g &

no-p), and θ = 5.5, s = 0.4 for the model with global
appearance and motion-based segmentation only
(ll-g & no-p).
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Figure D3. The saccade amplitude distribution of the simulated scanpaths is the second criterion, plotted analogously to Figure D2.

Appendix E: Videos of human and
model scanpaths

The visualizations of our model parts shown
in Figures 1 to 4 can be seen as downloadable
(https://doi.org/10.14279/depositonce-22812) videos for
10 different simulated scanpaths on that input sequence.

We show 10 simulated scanpaths for 10 additional
videos from the test set to illustrate the variability
of our dataset. For comparison, we also show the
scanpaths of 10 human participants on the respective
input sequences. All videos are shown with a playback
speed of 0.5 (i.e., 15 fps instead of 30 fps) to make it
easier to compare the scanpaths.
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Appendix F: Extended models:
Details and statistics

Figure F1. Illustration of the modified sensitivity maps S′ for the two extended models. (a) Saccadic momentum: We set the maximal
value in the direction of the previous saccade (indicated with the dotted line) to 2.5, which decreases linearly to 0.85 within an angle
of 35°, and multiply the resulting map with S. (b) Presaccadic attention: If the evidence of an object crossed 30% of the decision
threshold θ , we obtain a prompted object mask at its location and set the sensitivity of this object to 1.

Figure F2. Model extensions do not qualitatively change the aggregated scanpath statistics. (a–d) Analogous to Figure 6 but for
different model extensions. Plotted are the base model (blue, cf. Figure 5), its extension with saccadic momentum (green),
pre-saccadic attention (purple), and a saccadic dead time of 50 ms (gray) compared to the human data (red).
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