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Introduction
Humans explore the rich visual features of natural 
scenes by actively sampling information through eye 
movements. For a long time, research on where humans 
decide to move their eyes has focused on gaze behavior 
in static scenes. In contrast to the real world, however, 
humans who visually explore images in a controlled 
setting already know that the presented scene will not 
change over time. When exploring a dynamic scene, 
on the other hand, observers may have the top-down 
expectation that objects could move and the environ-
ment could evolve, even if these things appear static at 
the moment.

Given a static observer or camera, scene changes are 
characterized by object motion (e.g., a sitting person 
standing up), or sudden onsets, including changes in 
color or luminance (e.g., a traffic light changing color). 
The influence of the expectation of such scene changes 
on gaze behavior is difficult to assess because these 

changes by themselves—as bottom-up stimuli—have a 
strong effect on eye movements (Carmi & Itti, 2006; Itti, 
2005). It is no surprise, therefore, that differences in 
gaze behavior between static and dynamic scenes have 
been explained with the influence of motion and flicker 
(Smith & Mital, 2013), which consistently attract atten-
tion and lead to a high interobserver coherence (Dorr 
et  al., 2010; Mital et  al., 2011). Here, we present an 
experimental paradigm that isolates the influence of 
the top-down expectation of scene changes from their 
bottom-up salience.

Previous studies have demonstrated that anticipation 
of motion can influence gaze behavior even in static 
scenes. Açık et al. (2014) compared eye-tracking data 

1279198 PSSXXX10.1177/09567976241279198Roth et al.Psychological Science
research-article2024

Corresponding Author:
Nicolas Roth, Technical University Berlin, Cluster of Excellence 
Science of Intelligence 
Email: roth@tu-berlin.de

Gaze Behavior Reveals Expectations  
of Potential Scene Changes

Nicolas Roth1,2 , Jasper McLaughlin1, Klaus Obermayer1,2,3, 
and Martin Rolfs1,3,4

1Cluster of Excellence Science of Intelligence, Technische Universität Berlin; 2Institute of Software Engineering  
and Theoretical Computer Science, Technische Universität Berlin; 3Bernstein Center for Computational  
Neuroscience Berlin, Berlin, Germany; and 4Department of Psychology, Humboldt-Universität zu Berlin

Abstract
Even if the scene before our eyes remains static for some time, we might explore it differently compared with how 
we examine static images, which are commonly used in studies on visual attention. Here we show experimentally 
that the top-down expectation of changes in natural scenes causes clearly distinguishable gaze behavior for visually 
identical scenes. We present free-viewing eye-tracking data of 20 healthy adults on a new video dataset of natural 
scenes, each mapped for its potential for change (PfC) in independent ratings. Observers looking at frozen videos 
looked significantly more often at the parts of the scene with a high PfC compared with static images, with substantially 
higher interobserver coherence. This viewing difference peaked right before a potential movement onset. Established 
concepts like object animacy or salience alone could not explain this finding. Images thus conceal experience-based 
expectations that affect gaze behavior in the potentially dynamic real world.
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of natural dynamic scenes and static frames taken from 
the same movies. They showed that implied motion in 
the static scenes is equally effective at attracting gaze 
during the first second of viewing as the real motion in 
the respective dynamic scene is. A similar viewing ben-
efit, particularly for animate objects in static scenes, led 
to the animate-monitoring hypothesis (New et al., 2007), 
which suggests that animate objects capture attention 
because of the evolutionary benefit of their detection. 
This hypothesis is supported by animals attracting ultra-
rapid saccades in as little as 120 ms (Kirchner & Thorpe, 
2006) and animate objects being more frequently 
detected in inattentional-blindness tasks (Calvillo & 
Hawkins, 2016; Calvillo & Jackson, 2014). Hence, ani-
macy and contextual cues are important influences on 
attention allocation, even in static images. We hypoth-
esized that a more general explanation for why implied 
motion and animate objects attract attention is that they 
signal scene locations that may potentially change.

To address this fundamental question, we presented 
observers with a variety of real-world scenes and 
assessed how they visually explored images compared 
with visually identical scenes in which temporal 
changes can be expected. We hypothesized that we 
would find a significant difference in gaze behavior 
between the conditions because of the distinct top-
down expectations. Over time, we expected this effect 
to become stronger the closer the presentation time 
came to the onset of the expected scene change or 
motion. Across space, we expected the largest differ-
ence in gaze behavior in those parts of the scene to 
which people assigned the highest potential for change, 
meaning those places where independent raters 
expected motion or other scene changes to happen. 
We show that images indeed evoke different experience- 
based expectations than the potentially dynamic real 
world and that the newly introduced quantity potential 
for change explains this effect better than established 
measures of saliency or animacy.
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10.17605/OSF.IO/FWS93/), data acquisition (https://
doi.org/10.17605/OSF.IO/95VXK/), and measured vari-
ables (https://doi.org/10.17605/OSF.IO/2M6D7) were 
not formally preregistered, however, the timestamps 
indicate that the contents have not been changed since 
2022-09-30, prior to data collection which began on 
2022-11-24. There were minor deviations from the pre-
registration (for details, see Supplementary File Table 
S1). The data preprocessing and statistical analysis 
methods were not preregistered. Materials: All study 
materials are publicly available (https://osf.io/vj5dr/
files/osfstorage). Data: All primary data are publicly 
available (https://osf.io/x2gaz). Analysis scripts: All 
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https://osf.io/vj5dr/files/osfstorage). Computational 
reproducibility: The computational reproducibility of 
the results has been independently confirmed by the 
journal’s STAR team.

Statement of Relevance

We use eye movements to actively sample infor-
mation from an ever-changing environment. When 
we look at images such as paintings or photo-
graphs, however, we already know that nothing 
in the scene will change. In this work, we explored 
how the knowledge of when to expect scene 
changes influences where we look. To isolate the 
effect of this expectation and avoid conflating it 
with actual scene changes, we showed the same 
scenes to observers as static images and initially 
static but subsequently dynamic videos. Analyzing 
eye-tracking data for both conditions, we uncov-
ered a substantial difference in exploration behav-
ior for visually identical scenes: If observers 
expect movement or change, they more thor-
oughly explore parts of the scene where these are 
most likely. Our results reveal observers’ experience- 
based expectations, reinforcing the idea that we 
can learn most about attention in a dynamic world 
by studying it in dynamic scenes.
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Method

Participants

We recorded complete eye-tracking datasets of 20 par-
ticipants with normal or corrected-to-normal vision (10 
female; mean age: 27.95 years, range 21–38 years; 1 
left-handed, 1 ambidextrous). We determined the sam-
ple size by computing 90% power contours as a func-
tion of sample size and trial number (Baker et al., 2021) 
on the basis of our pilot data (N = 4; 20 out of 80 scenes 
used in the pilot were replaced in the main study for 
wider variety). For a lower boundary, we calculated the 
effect size as the mean difference in potential for 
change (PfC; µ∆ = 0 80. ) between conditions in the last 
200 ms before the scenes unfroze and the correspond-
ing within-subject (ws) standard deviation in PfC 
(σws = 1 56. ) and between-subject (bs) standard deviation 
(σbs = 0 37. ), resulting in a desired sample size equal to 
or greater than 6. We decided on a sample size of 20—as 
preregistered before the pilot data was analyzed—so 
we would also be able to analyze the effect size depend-
ing on the presentation time.

In the main study, three additional participants could 
not be reliably calibrated because of reflections in their 
glasses, so they did not complete the session, and we 
excluded their data. Participants were recruited through 
word of mouth and campus mailing lists and received 
€10 per hour or course credits as compensation. The 
ethical review board of the Department of Psychology 
at Humboldt-Universität zu Berlin approved the experi-
mental procedure, and we obtained written informed 
consent from all participants before including them in 
the study.

Apparatus

We implemented the experimental design in MATLAB 
(The MathWorks, Natick, MA) using the Psychophysics 
and EyeLink toolboxes (Cornelissen et al., 2002; Kleiner 
et al., 2007) on an Ubuntu 20.04 operating system. The 
experimental code can be accessed at https://github 
.com/rederoth/LPA_experimental_code/. Binocular eye 
movements were recorded with an EyeLink 1000 Plus 
tabletop system (SR Research, Osgoode, Ontario, Canada) 
operating at a sampling rate of 1000 Hz, and the par-
ticipants’ responses were collected using a standard 
American-English keyboard. To minimize head move-
ment, participants used a chin rest. Visual stimuli were 
displayed on a wall-mounted 16:9 video-projection 
screen 180 cm in front of the study participants, mea-
suring 150 84×  cm (Stewart Luxus Series GrayHawk G4, 
Stewart Filmscreen, Torrance, CA), which approxi-
mately corresponds to 45 2 26 4. .° × ° of visual angle. We 

used a PROPixx projector (VPixx Technologies, Saint-
Bruno-de-Montarville, Quebec, Canada) operating at 
its native vertical refresh rate of 120 Hz and a resolution 
of 1920 × 1080 pixels. To avoid high eccentricities, we 
showed images and videos in the central 1536 864×  
pixels (scaled using bilinear interpolation), correspond-
ing to 38 2 21 5. .° × °. The scenes were presented in color 
and with a γ  value of 2 2.  and a luminance ranging from 
a minimum of 0.08 cd/m2 to a maximum of 71.68  
cd/m2 on a black background in a dark room.

Stimulus design

The recorded dataset contains 80 different scenes, mostly 
of everyday situations (e.g., office work, traffic, zoo visit). 
Forty scenes depict at least one animate object (person 
or animal), and the other 40 scenes show only inanimate 
objects. We ensured variation in the number, semantic 
category, and location of objects, and in whether the 
scene was indoors or outdoors. A representative sample 
of scenes is shown in the Supplemental Material avail-
able online (Fig. S1). Each raw recording of a scene 
consists of a 10-s video. The videos were recorded with 
a Lumix DC GH-5 camera mounted on a tripod in 4K 
resolution at 25 frames per second. The first 5-s period 
of each video shows few scene changes or none at all, 
followed by a movement onset or other sudden onset, 
such as a change in luminance or color in a specific part 
of the scene. This resulted in changes to the scene of 
variable magnitude.

The central frame of the raw videos (right before the 
scene-change onset) was extracted and used for pre-
sentation in the static-image condition. In the frozen-
video condition, we showed the same central frame for 
the initial 5-s period and then played either the second 
half of the raw video (high-change condition) or the 
first half reversed in time (low-change condition), both 
with 50% probability for each presented scene in the 
video blocks. Hence, different observers saw different 
videos in the high- versus low-change condition. If we 
had shown videos only in the high-change condition, 
observers could have expected a scene change as soon 
as the video began to move. We thus introduced the 
low-change condition to evoke the expectation that one 
or more objects in the scene might move or otherwise 
change, while keeping observers uncertain about the 
expectation of such salient events in any given scene. 
Reversing the frames of the low-change condition pre-
vented a cut between the central frame and the video 
and was not noticeable to the observers because there 
was no directed motion in this part of the video. An 
example video that illustrates this editing process is 
available in the Supplemental Material (Video S1).

https://github.com/rederoth/LPA_experimental_code/
https://github.com/rederoth/LPA_experimental_code/
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Procedure

The experiment was performed in a single session with 
a blocked design consisting of four static-image blocks 
and four frozen-video blocks (Fig. 1), which were ran-
domly interleaved. After we tested their visual acuity, 
participants were instructed to freely explore the scenes 
as they wished. They were informed that they would 
see a total of 80 scenes, each occurring once during a 
static-image block and once during a frozen-video 
block; there would be occasional questions to ensure 
that they were still attending to the scene content. Each 
block contained 20 trials in which a randomly sampled 
scene was shown. Text displayed on the screen before 
each block indicated whether the upcoming block con-
tained images or videos. To ensure that participants had 
read the information, we asked them to confirm, using 
the right or left arrow keys respectively, whether the 
next block would be images or videos. Each trial was 
preceded by a fixation control, which displayed a red 
circle of 0.22° radius filled with a red dot on a black 
background. The position of the fixation target was 
randomly sampled on the rectangular space on the 
screen that the video was to occupy. Retrieving samples 
at a maximum rate of 1000 Hz, fixation control was 
passed after 400 ms of fixation within a 2° radius 
around the target red circle. After 2 s without valid fixa-
tion or after 50 broken fixations or refixations (set high, 
to give participants the time to look away before 
actively starting the trial by fixating correctly), the trial 
would be aborted and repeated at the end of the 
respective block, and a new 9-point calibration would 

be requested. Upon successful fixation control, the 
scene content was presented.

In a static-image block, the central frame of the raw 
video scene was presented as a static image for 10 s. In 
a frozen-video block, we first presented the central frame 
of the raw video for 5 s, which was then seamlessly fol-
lowed by 5 s of dynamic video (see Stimulus Design 
section). We showed videos with both low and high 
amounts of change to avoid priming participants’ expec-
tations too strongly. The video frames played at 24 
frames per second (to synchronize with the projector’s 
refresh rate, amounting to frame durations of 41.66 ms 
rather than the recorded 40 ms per frame). Thus, each 
block contained 200 s (20 10×  s) of stimulus presentation 
time. A black background followed the presentation of 
each scene. After each trial, there was a 20% chance 
that a predetermined question with two answer options 
appeared. We designed the questions to encourage a 
balanced exploration of the scene by ensuring that in 
less than half of the scenes the subject of the question 
was the object with the highest PfC score (cf. Fig. 1, 
where the question is about the person). For about 60% 
of the questions, exploring the objects with high PfC was 
not informative (e.g., “Is the scene outside or inside?” or 
“Are there any plants in the room?”). To ensure we would 
not introduce a bias between the static-image and fro-
zen-video conditions, we randomly sampled from the 
same pool of questions, and all questions could be 
answered from the static image’s visual information. Par-
ticipants selected their answers to the questions at their 
own pace by using the arrow keys. Once the trials in a 
block were completed, participants were informed that 

Frozen Video

Analyzed Data Unused Data

Static Image

Is the Person Male
or Female?

[male / female]

Fixational Control Central Frame

Image or Video 

Engagement Test

0 s 5 s 10 s

Stimulus Presentation Starts
After the Gaze Control Is Passed  

After 5s, the Scene Either
Stays Static or “Unfreezes”

Question in 20% of Trials

t

Fig. 1.  Experimental design and procedure. At the beginning of each block, observers were informed whether the displayed scenes for free 
viewing were shown in the static-image condition (blue) or the frozen-video condition. In both conditions, the trial was started after the 
fixational control was passed. In the first 5 s, the presented scenes were visually identical in both conditions. In the static-image condition, 
the stimulus remained unchanged, whereas in the frozen-video condition, the scene “unfroze” and played as a dynamic video (randomly, 
either in the low- or high-change condition) for the remaining 5 s. To keep the observers engaged, we randomly asked a simple question 
about the scene content after 20% of the trials.
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the block was finished. They could take a break after 
each block, and there was a mandatory short break after 
Block 4.

Scene annotation

For each of the 80 scenes in our recorded dataset, we 
annotated the central frame (used in the static-image 
condition and as the initial frame of the frozen-video 
condition) with pixelwise maps that quantify the PfC 
rating and the visual saliency and that segment the 
scene in semantic objects.

PfC rating.  The PfC in each scene was assessed by five 
independent labelers. Each labeler was asked to draw a 
single bounding box around the object or area in each 
scene where they think the PfC is highest—that is, where 
they expect movement or other changes in the scene to 
be most likely. The labelers had the option to redraw the 
box for each scene before they confirmed their selection, 
and they fulfilled this task without time constraints. Their 
ratings show a high level of consistency (see Fig. S2 in 
the Supplemental Material) with a mean pairwise inter-
section over union (defined for two bounding boxes as 
the area of intersection divided by the area of union) of 
0.423. In 74% of scenes, the bounding boxes of all label-
ers overlapped (i.e., all assessments include the point of 
maximum PfC). The quantitative pixelwise PfC map for 
each scene was calculated by adding all bounding boxes 
with an equal weight of one, dividing this map by its 
standard deviation, and subtracting the mean value (see 
Fig. 2 for examples).

Visual saliency.  We computed high-level salience 
maps for each scene with the DeepGaze IIE model, using 
the provided center bias from the MIT1003 dataset  

(Linardos et al., 2021). By combining multiple pretrained 
deep-neural-network backbones, this model generalizes 
well to unseen datasets and is considered the current 
state-of-the-art method in predicting fixation probability 
densities on static images. We also computed low-level 
salience maps on the basis of color, orientation, and 
luminance (cf. Itti et al., 1998) using the SaliencyToolbox 
(Walther & Koch, 2006). To better match the PfC maps, 
we normalized the saliency maps in the same way (M = 
0, SD = 1).

Object segmentation.  We segmented object masks 
using Mask R-CNN (He et al., 2017) as implemented in the 
Detectron 2 framework (Wu et  al., 2019). We manually 
refined the semantic segmentation masks and controlled 
for obvious segmentation mistakes (e.g., if prominent 
objects were not detected). We calculated object-based 
PfC or saliency scores as the average value of the respec-
tive map within the object mask. The object-based metrics 
are then scaled between 0 and 1, where 1 (0) corresponds 
to the object with each scene’s highest (lowest) score.

Gaze data

We classified eye-movement events using the velocity-
based eye-movement-event detection algorithm REMoD-
NaV (Dar et al., 2021). This algorithm can distinguish 
between fixation, smooth pursuit, saccades, post-saccadic 
oscillations, and blinks and is applicable to static and 
dynamic scenes. To account for the high quality of our 
data, we adapted the default parameters of the adaptive 
noise level (5 0 3 0. .→ , as in Nyström & Holmqvist, 2010), 
reduced the length of the Savitzky-Golay filter 
(0 019 0 005. .→ ), and increased the dilatation of missing 
data (0 01 0 025. .→ ). For the analysis of the gaze data, we 
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exclusively used the first 5 s of each trial when the 
stimulus was static in both conditions; therefore, no 
smooth pursuit occurred. We included the gaze positions 
during fixation events only in the quantitative evalua-
tion—that is, we excluded the gaze data during saccades, 
post-saccadic oscillations, and blinks from further analy-
sis. We considered a gaze position x y,( ) to be on an 
object if pixel x y,( ) corresponded to an object mask in 
the semantic segmentation map. To account for potential 
tracking inaccuracies, we assigned the gaze position to 
all masks within a tolerance radius of 0.5° of visual angle 
if x y,( ) lay on no object mask (the background).

Coherence measure

We measured the interobserver coherence by calculat-
ing the normalized scanpath saliency (NSS) in a “leave-
one-out” fashion (Dorr et al., 2010). The time-resolved 
NSS score for each observer was based on the value of 
their gaze position on a spatiotemporal map of the 
smoothed fixation locations of all other observers. For 
each trial of observer i , we generated a fixation-density 
map Ft for every point in time t , which contains Gauss-
ians around the gaze positions x tj ( ) of other observers 
viewing the same scene at this time:

	 F x ei
t

i j

x t x tj

x y( ) =
≠

−
( )− ( )( )

+( )∑
2

2 22 σ σ
.	 (1)

We set the parameters σ σx y= = 1 5. ° of visual angle 
as a tolerance on the basis of the size of the foveal 
region, while confirming that the results do not quali-
tatively change for alternative choices (σx y, = 1 or 2).

This map is generated for all t i∈ , which is the set 
of time points during which observer i is fixating. The 
normalized coherence score C ti ( ) for observer i over 
time was then calculated as

	 C t
F x t F

F
i

i
t

i
t

i
t

( ) =
( )( ) − ( )

( )
Mean

Std
.	 (2)

We confirmed the results of the NSS analysis with a 
second coherence measure called attentional synchrony 
(Smith & Mital, 2013; see Fig. S4 in the Supplemental 
Material).

Cluster-based permutation 
significance testing

We determine significant differences in time-series data 
through cluster-based permutation tests, as described 
in detail by Ehinger (2016). For each time point, we 
computed the difference between the static-image and 
frozen-video conditions and the corresponding t value 

on the mean and standard error between participants. 
We set a critical t value of tc = 2 093. , corresponding to 
a two-sided student t test with a 95% confidence inter-
val (CI) and 19 degrees of freedom (N = 20). Consecu-
tive time points exceeding tc  form clusters in time, 
which are then compared with a random baseline. For 
this, we randomly permuted the static-image and frozen- 
video labels for each time point 1,000 times. We identi-
fied the largest cluster above tc in these random per-
mutations and took the 95th percentile of the largest 
clusters as the cutoff value for significance in the origi-
nal time series. Because a t value above tc is required 
for the whole cluster, this provides a conservative esti-
mate for the point in time when the conditions lead to 
significantly different behavior.

Results

We focused our analyses on the first 5 s of the gaze data, 
during which the presented scenes in the static-image 
and frozen-video conditions were visually identical. 
Therefore, the observed differences in exploration behav-
ior between the two experimental conditions are exclu-
sively based on the observers’ top-down expectations.

Qualitative scanpath comparison

Despite identical visual scenes in the static-image and 
frozen-video conditions, observers’ top-down expecta-
tions may differ substantially. For static images, observ-
ers know that nothing in the scene can change, whereas 
frozen videos will eventually unfreeze. We hypothesized 
that this high-level knowledge brings about systematic 
differences in exploration behavior. We can qualitatively 
observe this expected difference in the scanpaths shown 
in Figure 2, which are representative of the recorded 
data in the respective condition. Observers initially 
explore the scenes similarly in both conditions: They 
direct their gaze toward the center of the screen and 
quickly scan salient objects, including the objects with 
high PfC scores (the toy in Fig. 2a and the cat in Fig. 
2b). In both conditions, the observers continue explor-
ing the scene further after first looking at the objects 
with high PfC. In the static-image condition, observers 
show a tendency to investigate objects with rich visual 
features, like text. In the frozen-video condition, observ-
ers consistently returned to parts of the scene with high 
PfC toward the end of the initial 5-s period.

Systematic viewing differences in 
interobserver coherence

We first quantified observers’ viewing behaviors by  
calculating the dynamic changes in interobserver 
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coherence (Fig. 3a), a measure of how consistent each 
observer’s scanpath is with the time-resolved fixation 
map of all other observers (see Method: Coherence 
Measure; see Fig. S4 in the Supplemental Material for 
an alternative coherence measure). Coherence was nor-
malized so that the random starting position in the fixa-
tion control for each trial led to an average initial 
coherence close to zero. Independent of the starting 
position, observers were highly consistent in exploring 
a scene’s most salient and central objects with their first 
few eye movements. This is consistent with the litera-
ture on the elevated influence of saliency (Donk & Van 
Zoest, 2008) and center bias (Rothkegel et al., 2017) on 
the first fixations in a scene, resulting in a prominent 
peak in coherence between 530 and 540 ms in both 
conditions. Following this initial peak, coherence 
decreased again because of observers’ individual view-
ing preferences (cf. de Haas et al., 2019). After 2,613 
ms, the average interobserver coherence was signifi-
cantly higher in the frozen-video condition compared 
with the static-image condition.

The higher coherence between observers in the frozen- 
video condition can be explained by observers’ consis-
tent exploration of parts of the scene with high PfC 
(Fig. 3b). We measured the PfC score over time as the 
normalized value of the PfC map at the current gaze 
position (see Method: Scene Annotation in the Supple-
mental Material). As for coherence, the random initial 
fixation position and the normalization of the PfC maps 
resulted in an initial average PfC score of around zero. 
The parts of the scene initially explored with high 
interobserver coherence correlate with a high PfC rating 
of the independent group of labelers. The PfC maps 

also show a center bias and correlate with salience (cf. 
Fig. S3 in the Supplemental Material). Hence, the peak 
in PfC roughly coincides with the peak in coherence 
independent of the viewing condition (692 ms in the 
static-image condition and 772 ms in the frozen-video 
condition). In the static-image condition, the average 
PfC score decreased monotonically afterward. In the 
frozen-video condition, in contrast, observers consis-
tently showed a stronger tendency to explore parts of 
the scene with high PfC. As hypothesized, we found a 
gradual divergence between the two viewing condi-
tions, with the largest difference in gaze behavior in 
the parts of the scene with high PfC ratings right before 
the video began to move.

In both the static-image and the frozen-video blocks, 
scenes were shown in randomized order, allowing us 
to explore potential effects of their viewing order (see 
Fig. S5 in the Supplemental Material). We found no 
connection between the PfC scores and the viewing 
order of the static images; that is, knowing what hap-
pened in the video did not influence the observers’ 
exploration behavior of the image. In the frozen-video 
condition, the effect was enhanced if the same scene 
had been seen previously as a static image, suggesting 
that familiarity with the static scene leads to stronger 
expectations about potential movement in the unfreez-
ing video.

Systematic object-based viewing 
differences

We next compared how the observers explored the 
individual objects in the scenes. For this, we subtracted 
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bottom indicate periods in which the two conditions are significantly different (see Method: Cluster-Based Permutation Significance 
Testing in the Supplemental Material). Shown in (a) is interobserver coherence (normalized scanpath saliency [NSS] score; see Method: 
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the average total fixation duration per observer in the 
static-image condition from the average total fixation 
duration per observer in the frozen-video condition for 
each object in the dataset. Positive values hence cor-
respond to objects that were fixated longer during the 
5-s presentation time in the frozen-video condition 
compared with the first 5 s of the corresponding static-
image trial. Indeed, some objects were consistently fix-
ated for longer durations in one condition than in the 
other (Fig. 4a). Importantly, the object-based PfC score, 
calculated on the basis of the PfC ratings across the 
object-segmentation mask (see Method: Object Seg-
mentation in the Supplemental Material), explained a 
significant amount of the variance of this difference. A 
linear regression indicated that objects with the highest 
PfC score in a scene (normalized to 1; see Method: 
Object segmentation) had, a larger difference in total 
fixation duration between the conditions (on average, 
212 ms larger) than objects with the lowest PfC score 
(normalized to 0). Objects with a PfC of 0 were, on 
average, fixated for 40 ms longer in the static-image 
condition.

We further distinguished fixation events by dividing 
them into three distinct categories (Linka & de Haas, 
2023; Roth et al., 2023): Detections (Fig. 4b) uncover 
an object for the first time; inspections (Fig. 4c) target 
the same object as the previous fixation and therefore 
further explore its details; and return events come back 
from elsewhere to revisit a previously fixated object 

(Fig. 4d). We did not expect a large effect of the condi-
tion on detection events but hypothesized a difference 
for inspections and returns. Indeed, observers reliably 
detected the objects in the scene with high PfC in both 
conditions, resulting in similar statistics for detection 
events (Fig. 4b). The average time spent on return 
events across all objects independent of PfC score was, 
on the other hand, 33 ms longer in the frozen-video 
condition compared with the static-image condition, 
whereas it was only 8 ms longer for inspections. The 
objects that were inspected, however, systematically 
differed between the conditions, with high-PfC objects 
receiving significantly more overt attention if a change 
could be expected (see Fig. 4c). Hence, observers in 
the frozen-video blocks were more likely to inspect the 
details within an object with high PfC and to return 
more often to these objects in anticipation of the move-
ment onset.

Effect of animacy and saliency

We confirmed in an additional analysis that the observed 
effect is actually best explained by PfC and not by 
established concepts like animacy or saliency, which 
are correlated with PfC (see Fig. S3 in the Supplemental 
Material) and which have systematic effects on viewing 
behavior (Linardos et al., 2021; New et al., 2007). To 
analyze the effect of animacy, we split the data into the 
40 scenes that contained only inanimate objects and 
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the 40 scenes that included at least one human or ani-
mal (Fig. 5a). If the systematic viewing differences 
could be explained by the animate-monitoring hypoth-
esis (Calvillo & Jackson, 2014; New et al., 2007), the 
discrepancies between static images and frozen videos 
would occur only in the animate scenes. Instead, we 
found that the inanimate scenes showed an equally 
sized effect. Overall, PfC was more predictive of where 
people look in animate scenes because such scenes 
contain features that tend to have a high PfC rating 
and consistently attract attention in particular faces 
(Broda et al., 2023; Hershler & Hochstein, 2005). The 
time course and actual effect size measured by the 
discrepancy in PfC between the static-image and frozen- 
video stimulus, however, was similar for animate and 
inanimate scenes (Fig. 5a). This was supported by a 
2 2×  analysis of variance of the accumulated PfC after 
5 s in the frozen-video versus static-image experimen-
tal condition, F(1, 76) = 23.2, p < −10 15, and for animate 
versus inanimate scenes, F(1, 76) = 106.1, p < −10 15 ; 
there was no significant interaction, F(1, 76) = 0.5, 
p = .47.

Finally, we explored the alternative hypothesis that 
in anticipation of the scene-change onset, observers 
simply orient their gaze behavior more to the most 
salient parts of the scene. When we, as with the PfC 
score, plot the average saliency score quantified with 
state-of-the-art methods at the gaze positions over time 
(see Method: Visual Saliency in the Supplemental Mate-
rial), the effect completely disappears for the inanimate 
scenes (Fig. 5b). The effect observed in the animate 
scenes is a consequence of the higher correlation of 
PfC and high-level saliency for animate objects (see Fig. 
S3 in the Supplemental Material). This was also con-
firmed by the object-based salience analysis (Fig. 5d), 
in which we plotted the same difference in total fixation 
duration for each object in the dataset, but as a function 
of the objects’ saliency score. In comparison to the PfC 
score (Fig. 4), the variance in total difference in fixation 
durations explained by the linear regressions is small 
(2%, compared with 15% for PfC). Low-level saliency, 
computed on the basis of color, luminance, and orienta-
tions within an image, does not explain any viewing 
differences in our scenes (Fig. 5c).
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Discussion

We showed that expectations about potential scene 
changes lead to systematically predictable viewing 
behavior. We disentangled the effect of the top-down 
expectation about potential scene changes from any 
bottom-up motion cues by presenting real-world scenes 
either as static images (10-s presentation time) or as 
videos (the initial frames were the same as the static 
images, shown for 5 s, but the videos then were unfro-
zen and turned into 5-s videos). Crucially, we evaluated 
the eye-tracking data for only the first 5 s of presentation 
time, when the visual stimulus is identical in both exper-
imental conditions.

We found that there was almost no difference in the 
initial detection of objects in the scene (Fig. 4b) and that 
observers were highly coherent within the first second 
of exploration, irrespective of the experimental condition 
(Fig. 3a). This is consistent with previous findings of 
early saccades being strongly dependent on saliency, 
even if it is not relevant for a given task (Anderson et al., 
2015), and with the “onset effect” (Dorr et al., 2010), in 
which the center bias leads to high interobserver coher-
ence for the first few saccades. After this initially high 
interobserver coherence, our results showed a systematic 
difference in gaze behavior between the static-image and 
the frozen-video conditions. When expecting scene 
changes, observers consistently allocated their gaze more 
toward the parts of the scene that had a higher PfC, as 
assessed by independent raters (Fig. 3b). Similarly, 
objects with high PfC ratings were more thoroughly 
inspected and were returned to more often in the frozen-
video condition (Fig. 4).

These findings imply that the PfC measure we intro-
duced here plays a crucial role in affecting eye move-
ments in real-world situations, where visual alterations 
in the environment might happen, even when it appears 
static at present. We calculated the PfC scores on the 
basis of the assessment of independent labelers  
who mapped where motion or scene changes could 
occur. This scoring is potentially correlated with other 
measures—for example, the highest information con-
tent, assuming the scene is dynamic. We expect all such 
semantic variations of metrics that intuitively capture 
the top-down expectations in this experiment to be 
highly correlated with PfC. Hence, we did not propose 
further alternative metrics. We did, however, ensure that 
concepts like implied motion, animacy, and saliency 
did not explain the observed effect.

Previous studies have shown that implied motion 
can attract gaze even in static scenes (Açık et al., 2014). 
Implied motion, which refers to motion deduced from 
static cues in the absence of real motion, did not occur 
in the investigated stimuli. The central frame, used for 

the first 5 s in the static-image and frozen-video condi-
tions, was extracted before the change in the original 
video (see Video S1 in the Supplemental Material). 
Hence, the presented scenes show, by construction, 
only expected motion and not implied motion. More-
over, any implied motion would have been identical in 
static images and frozen videos, as they were visually 
identical. Thus, although the concept of implied motion 
is related to PfC, it cannot explain the observed viewing 
differences.

The animate-monitoring hypothesis (Calvillo & 
Hawkins, 2016; Calvillo & Jackson, 2014; New et al., 
2007) suggests that animate objects capture attention 
because of their evolutionary importance for humans, 
and animate motion, in particular, has been shown to 
capture attention (Pratt et al., 2010). Under this ratio-
nale, one would expect increased monitoring of ani-
mate objects in the frozen-video condition compared 
with the static-image condition. Interestingly, however, 
the effect size in inanimate scenes (containing no ani-
mate object) was as large as in the animate scenes. 
Because animate objects can generate movement, PfC 
and animacy often correlate in our everyday experi-
ence, but we purposely decoupled the two in the 
recording of our dataset. Hence, we conjecture that 
effects typically ascribed to the animate-monitoring 
hypothesis may be better explained by a more general 
monitoring of PfC. For our dataset, we concluded that 
the PfC causes different top-down expectations between 
the conditions independent of an object’s animacy.

Finally, we found that biologically inspired, low-level 
saliency maps (Itti et al., 1998; Walther & Koch, 2006) 
capture little variance in observed gaze behavior and 
cannot explain the difference between the experimental 
conditions (Fig. 5c). We also computed high-level 
saliency using the DeepGaze IIE network (Linardos 
et al., 2021), which predicts where people look on the 
basis of its training on human-gaze data on static 
scenes. The model predicted well where observers in 
this experiment look (see the high scores in Fig. 5b) 
but did not explain the viewing difference between the 
static-image and frozen-video conditions. The differ-
ence between conditions for animate scenes is a result 
of the correlation between high DeepGaze IIE predic-
tions and PfC scores for animate objects—for instance, 
for faces (see Fig. S1 and Fig. S3 in the Supplemental 
Material). In the absence of task instructions, compu-
tational models of visual attention typically do not con-
sider top-down influences (Kümmerer & Bethge, 2023). 
To reproduce the effect of experience-based expecta-
tions on viewing behavior, statistical models (e.g., 
Kümmerer et al., 2022; Linardos et al., 2021) could be 
retrained or fine-tuned on the gaze data presented here. 
Mechanistic models of gaze behavior (e.g., Roth et al., 
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2023) can explicitly include the PfC maps to reproduce 
the anticipatory saccades in the frozen-video condition, 
but not take PfC into account for reproducing the 
behavior for the static-image condition.

A related concept to the PfC presented here is the 
construction of meaning maps. Henderson and Hayes 
(2017) introduced meaning maps as the spatial repre-
sentation of semantic richness in a scene, obtained from 
context-free assessments by many raters of local scene 
patches in terms of “low and high meaning.” Meaning 
maps are, therefore, defined only for static images and 
do not take the global scene context for individual 
objects into account. Similar to manipulations in which 
objects were presented in atypical contexts (Pedziwiatr 
et al., 2021), meaning maps would—by construction—
not capture the expectation about movement or sudden 
onsets as quantified by PfC. Consequently, we would 
expect meaning maps to be both similarly predictive 
of where people look and incapable of explaining the 
viewing differences between the static-image and frozen- 
video conditions as high-level salience maps (cf. Fig. 
5b and d).

Although expectations about the spatial structure in 
natural environments have been investigated exten-
sively in recent years (Summerfield & De Lange, 2014; 
Vo et  al., 2019; Wolfe, 2021), expectations about the 
temporal structure of dynamic real-world scenes have 
received less attention. It has been shown that humans 
make use of temporal regularities to guide behavior 
(Nobre & Van Ede, 2018). The interaction between 
anticipatory eye movements and object motion has 
been studied in smooth-pursuit experiments, revealing 
a significant impact of motion-direction expectancy on 
the initiation of anticipatory movements (Carneiro 
Morita et  al., 2023; Damasse et  al., 2018; Stewart & 
Fleming, 2023) and an increased prediction of visual 
motion through pursuit eye movements (Spering et al., 
2011). Eye-tracking experiments during the interaction 
with the environment, like preparing food (Land & 
Hayhoe, 2001) or intercepting a ball in flight (Binaee 
& Diaz, 2019; G. Diaz et al., 2013; Fooken et al., 2021), 
show that in everyday life, eye movements are “proac-
tive, anticipating actions rather than just responding to 
stimuli” (Land & Furneaux, 1997, p. 1231). This also 
holds true for gaze behavior during the free viewing of 
dynamic natural scenes, when observers’ reactions to 
salient events often preceded or coincided with events 
in the videos (Vig et  al., 2011). The contextual cues 
used to guide predictive eye movements have been 
studied systematically when following the puck in an 
ice hockey game (Goettker et al., 2021). In this exam-
ple, kinematic cues, experience with the stimuli, and 
the amount of context information were critical factors 
for successful predictive eye movements (Goettker 
et  al., 2023). The differences in top-down effects for 

real-world images and videos have not yet been 
explored. We deliberately designed our experiments to 
eliminate the influence of the task, dynamic (or implied) 
motion cues, and expertise by recording free-viewing 
gaze on initially static everyday scenes. Hence, we show 
that the experience-based expectations evoked by 
potentially dynamic scenes alone can lead to anticipa-
tory eye movements.

The primary focus of this study was to demonstrate 
the existence of different expectations between static 
and (potentially) dynamic scenes and to show their 
effect on gaze behavior. More specific characteristics of 
this effect remain to be investigated. In our experimental 
design, the duration of the static first frame in the frozen- 
video blocks was always 5 s. Varying this freeze duration 
in future experiments to higher, lower, or unpredictable 
values would provide additional information about the 
time course of the expectation. Furthermore, follow-up 
experiments could investigate to what extent the expe-
rience-based expectations about dynamic scenes can be 
experimentally manipulated. In this study, we measured 
the gaze behavior of the observers (i.e., their allocation 
of overt attention). Although visual attention does not 
necessarily coincide with overt gaze behavior (Carrasco, 
2011; Posner, 1980; Spering & Carrasco, 2015), the tight 
link between attention allocation and eye movements 
during free viewing is well established (Henderson, 
2003). Hence, we expect that if we actively probed 
covert attention in this paradigm (cf. Dorr & Bex, 2013), 
the attended locations would correlate to the gaze 
behavior measured here.

In summary, our results demonstrate that the top-
down expectations based on PfC explain substantial 
variance in gaze behavior in natural scenes, beyond  
the impact of implied motion, animacy, or visual 
saliency. These results reveal that images evoke differ-
ent experience-based expectations than the (potentially 
dynamic) real world, emphasizing the significance of 
using dynamic scenes in our pursuit of understanding 
attention in ecologically valid environments. Indeed, 
given the robustness of the effect, it provides a poten-
tially insightful marker in the context of developmental 
and educational psychology (Kaakinen, 2021; Kirkorian 
& Anderson, 2017) as well as for investigations of antici-
pation in sports (G. J. Diaz et al., 2012; Loffing & Cañal-
Bruland, 2017).
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