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Abstract

When analyzing eye tracking data, one of the central tasks is the detection of saccades. Although many
automatic saccade detection algorithms exist, the field still debates how to deal with brief periods of
instability around saccade offset, so-called post-saccadic oscillations (PSOs), which are especially prominent
in today’s widely used video-based eye tracking techniques. There is good evidence that PSOs are caused by
inertial forces that act on the elastic components of the eye, such as the iris or the lens. As this relative
movement can greatly distort estimates of saccade metrics, especially saccade duration and peak velocity,
video-based eye tracking has recurrently been considered unsuitable for measuring saccade kinematics. In
this chapter, we review recent biophysical models that describe the relationship between pupil motion and
eyeball motion. We found that these models were well capable of accurately reproducing saccade trajectories
and we implemented a we framework for the simulation of saccades, PSOs, and fixations, which can be
used—just like datasets hand-labeled by human experts—to evaluate detection algorithms and train
statistical models. Moreover, as only pupil and corneal-reflection signals are observable in video-based
eye tracking, one may also be able to use these models to predict the unobservable motion of the eyeball.
Testing these predictions by analyzing saccade data that was registered with video-based and search-coil eye
tracking techniques revealed strong relationships between the two types of measurements, especially when
saccade offset is defined as the onset of the PSO. To enable eye tracking researchers to make use of this
definition, we present and evaluate two novel algorithms: one based on eye movement direction inversion
and one based on linear classifiers previously trained on simulation data. These algorithms allow for the
detection of PSO onset with high fidelity. Even though PSOs may still pose problems for a range of eye
tracking applications, the techniques described here may help to alleviate these.
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1 Introduction

Rapid step-like eye movements, so-called saccades, are the fastest
and most frequent of human movements. As they reorient the
fovea—the retina’s area of sharpest vision—toward objects of inter-
est and produce transients in the input, saccades are crucial for the
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active perception of the visual world. For more than a century,
researchers have measured saccades and their role in visual percep-
tion using various eye tracking techniques, such as visual
inspection, mechanical recordings, tracking of mirror-reflected
beams of light, electrooculography, and even the apparent move-
ment of afterimages [1]. Today, the most common applications use
the method of video-based eye tracking. Using infrared or near-
infrared light sources, video-based systems track the center of the
illuminated pupil, as well as position of the first Purkinje image
(PI), the corneal reflection, to estimate gaze position.

Due to the high speeds of saccades, which, at large amplitudes,
routinely reach peak velocities of up to 700 degrees of visual angle
per second (dva/s) [2], inertial forces act on the eye. These forces
act not only on photoreceptors on the retina, which tilt away from
the direction of rotation [3], but also on the lens and the iris, whose
relative motion causes so-called post-saccadic oscillations (PSOs),
widely also referred to as dynamic overshoots [4]. These can be
observed in eye tracking data as brief periods of instability, or even
ringing, around the end of a saccade (Fig. 1a, b), often with dura-
tions of!25ms [5]. Alternatively, if the eye is filmed by a high-speed
camera, a PSO can be identified as a brief deformation or “wob-
bling” of the iris following a saccade. In the case of video-based eye
tracking, there is good evidence that it is specifically the motion of
the pupil within the iris that causes prominent PSOs [6–8], whereas
in Dual Purkinje Image (DPI) eye tracking systems, they are related
to the misalignment of cornea (1st and 2nd PIs) and lens (3rd and
4th PIs) [9–11]. To elucidate, a short slow-motion video, which we
recorded with a Phantom high-speed camera at 7300 fps and that
can be viewed at https://osf.io/23798/, shows not only post-
saccadic movement of the pupil border relative to the prominent
corneal reflection but also a weaker light spot within the pupil, most
likely a reflection from the lens, with striking lag and oscillation. Yet,
it has been suggested that at least a small proportion of PSOs has its
origin in oculomotor control signals, specifically in the temporal
coordination of agonist and antagonist motoneural activity [4, 12,
13]. There is evidence for this view, as small PSOs could also be
shown when measuring saccades with scleral search coils, attached
to the eye’s cornea and thus directly measuring the rotation of the
eyeball [14–17]. However, these PSOs—provided that they were
not caused by low contact lens slippage—occurred mainly for very
short saccades or microsaccades, had significantly lower incidence
and smaller amplitudes than in video-based systems, and contained
not more than one phase [18, 19].

In the context of video-based eye tracking, the notion that PSO
amplitude should decrease with saccade amplitude is captured in
the “gentle braking” hypothesis: short saccades must decelerate
more abruptly than large saccades, causing the elastic components
of the eye to oscillate to a larger extent [6, 20]. A rule of thumb is
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that the larger the anatomical distance between an elastic compo-
nent and the point where the extraocular muscles exert force on the
eyeball, the more prominent is the PSO [20]. Indeed, PSO ampli-
tudes are maximal when measured based on the reflections from the
lens (4th PI), considerably smaller when measured based on pupil
position, and basically absent in the corneal reflection (1st PI) [11].

Why should the eye tracking researcher care about post-
saccadic oscillations? Clearly, the question how we treat PSOs is at
the core of the (more conceptual) question how we define saccade
offset. On the one hand, one may define saccade offset as the point
when the elastic components of the eye are at “rest” (even though
due to fixational eye movements and tremor the eye is never really
static [28, 29]), that is, after the PSO (Full definition in Fig. 1).
This is a reasonable definition in the light of the evidence that
suggests that the movement of the lens can have manifest percep-
tual consequences [11, 30]. On the other hand, as several
co-registration studies have shown that PSOs may by far outlast
the rotation of the eyeball [10, 18, 31], this criterion may lead to

Fig. 1 Illustration of different saccade definitions. (a) How to transform a two-dimensional gaze position (x, y)
signal to position change (ΔPos) and direction (Dir) over time to visualize post-saccadic oscillations. The data
[taken from a hand-labeled data set, 21–23] shows a leftward saccade that is initiated at fixation position (xon,
yon). The constant ppd (pixels per degree) transforms eye position in pixel coordinates into degrees of visual
angle. (b) Position, velocity, and acceleration profiles of three saccades of different sizes, of which one is a
microsaccade [from a hand-labeled data set, 24]. Saccade amplitudes and durations may be computed based
on different offset definitions, namely the onset or offset of the post-saccadic oscillation (DPSO or DFull),
respectively. (c–f) Saccadic main sequence relationships for three observers [again from 21–23], depending
on the PSO (green) and Full (blue) saccade offset definitions. Amplitude–duration relationships were fitted with
a square root model (D ¼ D1 #

ffiffiffi
A

p
, [25]), and amplitude–peak velocity relationships were fitted by an

exponential model (Vpeak¼ V1 # AP, [2]), using the mixed-effects framework provided by the nlme R package
[26]. Other relationships are approximated by linear mixed-effects models fitted with the lme4 R package
[27]. MAE indicates the mean absolute errors of each set of fits, separately for each saccade offset definition
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gross overestimations of saccade duration. In fact, as shown in
Fig. 1b, PSOs may almost be as long as the main component of
the saccade. In cases in which a more conservative criterion is
needed, for instance, when a visual stimulus manipulation must
be concluded while a saccade is still ongoing [32], it may be useful
to define the prominent peak of the first oscillation phase (i.e., the
onset of the PSO) as the saccade’s offset (PSO definition in Fig. 1).
As we will later also show, there is good evidence that “the peak of
each overshoot coincides approximately with the time of the con-
clusion of the coil-measured saccade” [10, p. 532], suggesting that
onset of the PSO might be a better predictor for the end of the
physical rotation of the eyeball than PSO offset.

With video-based eye tracking data alone, it is hard to evaluate
such assumptions as a ground truth is usually unavailable. Yet,
researchers have the possibility to assess the plausibility of their
saccade definitions by examining the so-called main sequence,
which describes stereotypical relationships between saccade ampli-
tude, saccadic peak velocity, and saccade duration [12]. The main
sequence relationships can be fitted with a number of models whose
goodness of fit indicates how well one’s definition of a saccade
adheres to general principles of oculomotor function
[33]. Figure 1c indicates that adopting a Full saccade definition
essentially leads to almost a doubling of saccade duration relative to
the PSO-defined saccade duration, which is especially drastic at
short saccade amplitudes and leads to a strong reduction of the
goodness of fits. The same applies to the relationship of saccade
amplitude with the product of peak velocity and duration (Fig. 1e),
a measure that should be especially tight as it includes the propor-
tional relationship of peak and mean velocity of saccades
[34]. Indeed, for PSO-defined saccades, but not for Full-defined
saccades, mean velocity (computed based on average sample-to-
sample velocity) directly translates to the quotient of saccade ampli-
tude and duration (Fig. 1f), as suggested by many previous inves-
tigators [2]. Including the PSO duration to the saccade offset
definition may thus disrupt these relationships. The perhaps most
frequently described relationship of saccade amplitude and peak
velocity, however, remains largely unaltered by saccade offset defi-
nitions (Fig. 1d). This is expected as a saccade’s peak velocity is not
reached during the PSO component. Defining the peak of the post-
saccadic overshoot as saccade offset necessarily leads to an overesti-
mation of saccade amplitude, but as saccadic peak velocity
measured by video-based systems is also overestimated compared
to those measured by scleral search coils [6, 10, 18, 19, 35], the
relationship can still hold. Yet, saccade amplitudes, if defined as the
distance between fixation positions and thus not including
PSO-related overshoots, are extremely similar in both video-based
and search-coil systems [31, 36]. Thus, not only for compatibility
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with search-coil data but also because oscillations imply a repetitive
movement around a point of equilibrium, it is more reasonable to
use the Full definition of saccade amplitude.

The definition of saccade offset determines a vast number of
metrics frequently computed by eye tracking researchers, such as
fixation duration or (secondary) saccade latency, and may critically
affect various applications, ranging from gaze-contingent displays
to clinical diagnostics. In fact, some authors went as far as to declare
video-based eye tracking unsuitable for studying the dynamics of
saccades [6]. This book chapter shall thus discuss potential ways to
alleviate these issues. In Subheading 2.1, we will describe physio-
logically plausible models that allow not only for the close approxi-
mation of profiles of saccades with post-saccadic oscillations but
also for the extraction of the underlying profiles of eyeball rotation
[37, 38]. These models’ predictions will be validated in Subheading
2.2 on the basis of co-registered video-based and scleral-coil eye
tracking data [39]. We will also present simple statistical heuristics
that show the relationship between the two types of measurements
that quantify motion trajectories of the two different anatomical
structures measured by these two eye tracking techniques. Empha-
sizing the usefulness of detecting the onset of PSOs, we will finally
present and evaluate two methods for saccade and PSO detection,
namely velocity- and direction-based extensions to the widely used
Engbert–Kliegl algorithm for microsaccade detection [40, 41]
(Subheading 2.3), as well as a more sophisticated approach apply-
ing linear classifiers trained on simulated saccade data with model-
generated labels (Subheading 2.4).

2 Methods

2.1 Modeling
Saccade Trajectories

Saccades usually follow prototypical position profiles that can be
nicely visualized when transforming two-dimensional gaze position
data to position change over time (Fig. 1a), thereby normalizing for
different saccade directions. Several models to approximate these
profiles have been proposed (see Fig. 2a for a non-exhaustive list),
ranging from cumulative distribution functions to dedicated para-
metric models [42, 43]. These models can easily be fitted using any
nonlinear least-squares method, yet they often do not account for
PSOs. In fact, PSOs may even distort these models’ estimates of
saccade amplitude. An exception is a recent model (Fig. 2a, right
panel) that assumes a harmonic oscillator driven by a step function.
This model is capable of closely approximating the shape of both
saccade and post-saccadic oscillations [44] using only four para-
meters: amplitude (a), onset delay (t0), duration (b), and frequency
(ω).

That the harmonic oscillator might indeed be a reasonable and
physiologically plausible model for describing the inertial
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movement of the pupil embedded in the iris (or the lens in the case
of DPIs) relative to the rotation of the eyeball has been proposed by
Bouzat and colleagues [37]. As illustrated in Fig. 2b, they sug-
gested that what pupil–CR video-based eye trackers measure is
essentially a combination of two interdependent movements over
time, namely the angular position of the eyeball x(t), which is

Fig. 2 Modeling saccades and post-saccadic oscillations. (a) Collection of models previously used to fit
saccade trajectories. Using the Levenberg–Marquardt algorithm, these models were fitted to a saccade
featuring a prominent one-phase PSO measured with an SMI Hi-Speed eye tracking system at a sampling rate
of 500 Hz [22]. (b) Simple illustration of the eye’s anatomy and the central assumptions of the model proposed
by Bouzat and colleagues [37, 38]. Three types of models were proposed, in which the viscosity and elasticity
parameters γ and k are either constant or vary depending on either the force F(t) exerted on the eyeball or the
relative position of the pupil y(t) relative to the position of the eyeball x(t). (c) Left column: average saccades of
two human observers measured by Drewes and colleagues [39] using video-based eye tracking (green lines)
and scleral search coils (orange lines) simultaneously. Other columns: predictions of the three types of models
for pupil motion x(t) + y(t) (green lines) and eyeball motion x(t) (orange lines), each assuming one set of
parameters for each observer and across all amplitudes. These sets of parameters were estimated using a
custom grid search procedure that determined the smallest sum of squares for the entire set of saccades by
brute force
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driven by a time-dependent forcing profile F(t), and the position of
the elastic parts of the eye relative to the eyeball y(t).This relation-
ship is captured by the harmonic oscillator equation ÿþ γ _y þ ky ¼
%x ̈ [37, Eq. 2], in which γ and k are the viscosity and elasticity
constants, respectively. With respect to these parameters, the
authors propose three different model variants: (1) γ and k may
remain constant over time (constant model), (2) γ and k change as a
function of exerted force (force-dependent model), or (3) γ
changes as function of the iris’ deviation from its initial rest posi-
tion, while k remains constant (inhomogeneous viscosity model).
As noted in Fig. 2b, two additional parameters quantify these
relationships– c and d for force-dependent models or a and b for
viscosity models, respectively. In all model variants, ẍ represents the
force received by the iris (i.e., the acceleration of the eyeball), which
is equal to the derivative of F(t), that is, F 0ðtÞ ¼
Ae%ðt=τÞμ βtβ%1 % μ

τμ t
βþμ%1

" #
[38, Eq. 11], where parameter

A relates to forcing strength and β and μ relate to the peak velocity
and skewedness of the resulting velocity profiles. For convenience,

the parameter τ can be substituted with τ ¼ ðβþ1Þxm
AΓðβþμþ1

μ Þ

$ % 1
βþ1

[38,

Eq. 6], where Γ is the gamma function [45, Eq. 6.1.1] and xm is
the saccade amplitude. To allow the reader to assess the individual
contributions of the model parameters, we implemented an inter-
active application which can be accessed at https://
richardschweitzer.shinyapps.io/pso_fitting_example/. Finally,
given all the above parameters and assuming an initial state of
y(0) ¼ _y (0) ¼ 0 where the eye is at rest, the above differential
equation for the harmonic oscillator can be solved numerically for a
time sequence t (from 0 to an arbitrary value tmax) to compute the
relative movement of the pupil y(t). To estimate the pupil’s entire
trajectory, y(t) must be combined with the eyeball’s movement

x(t), which is defined as xðtÞ ¼ A tβþ1

βþ1 1F 1
βþ1
μ , βþμþ1

μ , % t
τ

" #μh i

[38, Eq. 4], where 1F1 is a confluent hypergeometric function
[38, Eq. A1]. In order to facilitate the application of this procedure,
we implemented it in the programming language R using the
deSolve package for solving initial value problems [46]. It is publicly
available at https://github.com/richardschweitzer/Post
saccadicOscillations and includes all model types and examples for
fitting.

An advantage of the proposed model is that by just varying the
saccade amplitude parameter xm, one set of parameters may pro-
duce entire families of saccades that have properties strikingly simi-
lar to empirical data: Fig. 2c shows average saccades of two
observers recorded simultaneously with video-based and search-
coil measurements [39] along with the corresponding model pre-
dictions for pupil (x(t) + y(t)) and eyeball (x(t)). Note that in this
plot model predictions may not perfectly match the empirically
measured saccades, which is owing to the fact that at this point
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only one set of parameters per model and observer was used to
produce all saccade amplitudes (individual fits will be conducted in
Subheading 2.2). Yet, the model was able to reproduce some
signature aspects of the empirical data. First, as first shown by
Deubel and Bridgeman using a DPI [10], the movement of the
eyeball precedes the movement of the pupil (or the lens) at saccade
onset and also reaches its final position earlier. This delay, which
occurs in all model variants, is the consequence of the inertial forces
that act upon the elastic components of the eye. What follows, as we
will show later, is that the saccadic peak velocity reached by the
pupil should be larger than the peak velocity of the eyeball
[6, 19]. This is also predicted by the model, because the velocity
of the relative motion of the pupil, as it returns to and then over-
shoots its initial equilibrium position (i.e., y¼0), adds on to the
velocity of the eyeball rotation. Second, both the data (clearly at
least for observer 1, top row in Fig. 2c) and the model predictions
replicate the finding that the prominence of PSOs decreases with
increasing saccade amplitudes [18, 20]. This could be explained by
the idea that for shorter saccades it is more likely that extraocular
forcing profiles directly overlap with the natural oscillation patterns
of the iris, thereby producing a resonance-like phenomenon
[37]. Similarly, a more tailed velocity profile, which is characteristic
of larger saccades [34, 47], naturally contains longer deceleration
periods and could thus allow the pupil to return to its equilibrium
position in time for the end of the eyeball’s rotation. The model
proposed by Bouzat, Del Punta, and colleagues [37, 38] is thus
capable of reproducing patterns of pupil and eyeball motion
throughout the saccade while resting on plausible physical princi-
ples. Yet, up to this point, it remains unclear how well this model
actually corresponds to empirical data and what it could be used for
by the eye-tracking community. Therefore, we will next critically
investigate model predictions (Subheading 2.2), especially the pre-
dictions of individual eyeball motion trajectories, and later provide
an example of how eye movement research could benefit from
saccades that are authentically simulated by these kinds of models
(Subheading 2.4).

2.2 Predicting
Eyeball Motion from
Pupil Motion

One of the exciting possibilities that this model opens up is that, by
fitting individual saccadic trajectories measured with video-based
eye tracking, it may be possible to infer the unobservable motion of
the eyeball from the observed motion of the pupil. In other words,
by fitting the model to approximate x(t)+y(t), we automatically
extract the parameters for describing x(t). The model has so far
only been used to generate families of saccades [37, 38]. Here we
will attempt the modeling of single saccades and evaluate the
goodness of fit for pupil and eyeball predictions by comparisons
with ground truth data.
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Fitting the proposed models outlined in Subheading 2.1 to
actual saccades requires the detection of those saccades first. We
applied the widely used Engbert–Kliegl algorithm (see Subheading
2.3 for a detailed description) with a velocity threshold multiplier of
5 and a minimum duration of 15 samples, and only considered
those saccade candidates that could be detected in both video-
based and search-coil data. We fitted position profiles of saccades
in a time window of 120 ms starting at t¼0, that is, the detected
saccade onset in the search-coil data, where the eye’s position was
set to 0 dva. Considering the complexity of the model, fitting the
model can prove a difficult task, as it may be difficult to find global
minima or, in other words, the truly best fitting model parameters.
More specifically, optimization algorithms will most likely find local
minima which are heavily dependent on the supplied starting para-
meters [48]. To mitigate this problem, we used two procedures
that worked reasonably well. First, one can specify an entire grid of
starting parameters and run an optimization algorithm, such as the
Levenberg–Marquart algorithm included in the R package min-
pack.lm [49], for every single starting parameter combination. For
each run, the resulting estimates and the goodness of the fit are
saved. After that, one may choose the result that best fits the data or
has the most plausible parameter estimates. Second, one may also
perform a two-step procedure. In the first step, the best starting
parameters are determined by a grid search (or random search)
approach, in which the best model parameters are determined by
brute force in a rather coarse manner. An easy-to-use implementa-
tion is, for instance, provided by the nls2 R package [50]. In the
second step, these brute-forced model parameters can be refined
when supplied as starting parameters to an optimization algorithm.
An obvious disadvantage is that both of these approaches are com-
putationally costly, especially as in each iteration (at least) one
ordinary differential equation has to be solved numerically. Yet,
these iterations can often be easily parallelized [e.g., 51], and para-
meters have limited ranges of plausibility (i.e., β: 1–1.3, μ: 1–4, A:
0.02–0.08, γ: 0.05–0.20, k: 0.01–0.10; see ref. [38] for further
details).

Figure 3a shows the best parameter estimates across saccade
amplitudes for both observers and three model types, clearly sug-
gesting that only one set of parameters is unlikely to account for an
observer’s entire saccadic main sequence. For instance, larger sac-
cade amplitudes are better fitted by higher values of A, indicating
an increase of mechanical forcing strength. Moreover, larger ampli-
tudes are associated with lower values of γ, suggesting that viscosity
decreases, thus leading to more pronounced PSOs. On the one
hand, it may well be that viscosity and elasticity change depending
on the applied external force, as elastic parts of the eye may be not
only rotated but also deformed by that force [37]. On the other
hand, as the model has been shown to underestimate PSO

Definition, Modeling, and Detection of Saccades in the Face of Post. . . 77



amplitudes at larger saccade amplitudes (Fig. 2c), lower values of γ
may simply be needed to match the larger-than-predicted PSO
amplitudes present in the data. Fitting individual saccade trajec-
tories (compared to using one set of parameters for an entire family
of saccades) thus improves the model representation of PSOs that
occur at larger saccade amplitudes: modeled trajectories for 16-dva
saccades shown in Fig. 3c are in fact strikingly similar to those
found in previous studies [e.g., 20, Figs. 8 and 10]. It is also
quite evident that high values of μ are especially prominent at

Fig. 3 Fitting individual saccade trajectories to predict eyeball motion from pupil motion. (a) Parameter
estimates for best-fitting models of individual saccade trajectories (extracted from data by Drewes and
colleagues [39]) for observers 1 (circles, solid lines) and 2 (triangles, dashed lines). Colors indicate the three
model variants: constant (purple), force-dependent (green), and inhomogeneous viscosity (yellow). (b)
Goodness of fit, as measured by Bayes information criterion (BIC), for the three model types and three options
for treating parameters β and μ: setting both to their proposed default values [37], adding μ as a free
parameter, or adding both β and μ as free parameters. c Results of individual fits, using the mean best-fitting
parameters for each observer, model, and saccade amplitude. Predictions are shown for pupil motion (green
lines) and eyeball motion (orange lines). (d–g) Main sequence relationships of original and modeled saccades
for observers 1 and 2. Model predictions for each saccade were produced by the best model, as indicated by
the lowest BIC. Color indicates the measurement type: video-based tracking and pupil motion
(green) vs. scleral search-coil tracking and eyeball motion (orange). Right figures in each panel show the
statistical relationship between original saccade metrics and those predicted by the model
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short saccades, resulting in brief high-velocity forcing profiles and
leading (as we will show in Fig. 3d and e) to an underestimation of
the eyeball’s actual rotation duration at very short saccade
amplitudes.

As parameters A, β, and μ all manipulate the shape of the
forcing profile in a rather similar manner [38, Fig. 2], is it necessary
to include all of them as free parameters? Measures of model
parsimony (Fig. 3b) suggest that it is reasonable to include μ as a
free parameter—especially if the constant model is used—but not
necessarily β. This parameter can be safely set to β¼1, especially as
values of β<1 would lead to infinite acceleration and are therefore
meaningless [38]. With respect to the question which model type
most parsimoniously fits the data, our analysis suggests to choose
either the constant or the force-dependent model. If it is crucial to
minimize computing time, then it is advisable to choose the con-
stant model, as its lower number of free parameters reduces run
times of the fitting procedure by at least a factor of 3.

To what extent is the model capable of reproducing an obser-
ver’s saccadic main sequence? To answer this question, we let each
saccade’s best-fitting model predict a position profile and per-
formed velocity-based saccade detection on both the predicted
and the real saccades to extract metrics like PSO-defined and Full-
defined saccade duration (DPSO andDFull, see Fig. 1b), peak velocity
(Vpeak) and the product of the latter (Vpeak #DPSO). Note that most
saccade detection algorithms use two-dimensional position data
(i.e., [x,y] over time), while the model discussed here uses
one-dimensional position data (i.e., position change over time).
As long as the direction vector of the original saccade (relative to
the saccade starting point [xon, yon]) is known, model predictions
can always be transformed back to two-dimensional data (Fig. 1a),
thereby even reproducing the original saccade’s curvature. When
looking at the capability of the model to accurately reproduce
saccade metrics, two aspects of the fit may be evaluated, namely
(1) how well the model is able to fit pupil-based signals of saccades
and post-saccadic oscillations and (2) how well the model can infer
the latent metrics of eyeball rotation, which are otherwise unob-
servable with video-based measures. Regarding the first aspect, the
results show that the model is capable of matching both PSO-
defined saccade durations (Fig. 3d) and peak velocities (Fig. 3f)
with high coefficients of determination. The exact shape of the
PSO, however, could not be captured with such precision, as indi-
cated by the on average veridical, but considerably weaker relation-
ship between actual and predicted Full-defined saccade duration
(Fig. 3e). With respect to the second aspect, results suggested that
the model inferred duration and peak velocity of eyeball motion
reasonably well, even though systematic prediction errors became
apparent. Saccade duration was underestimated at very small ampli-
tudes and overestimated at larger amplitudes (Fig. 3d), whereas
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saccadic peak velocity was overestimated at very small amplitudes
(Fig. 3f). These prediction errors could be explained by the
assumption that the underlying forcing profiles of coil-measured
short saccades may actually be quite different from the profiles
assumed in the model, as short saccades or microsaccades have in
fact been shown to exhibit dynamic overshoots, as well [16, 18,
19]. As the current model does not incorporate this aspect, forcing
profiles could become increasingly brief and rapid at small ampli-
tudes (as indicated by increased estimates of μ in Fig. 3a) to accu-
rately fit the prominent PSOs in the video-based pupil data. Note
that, due to their small size and low velocity, it can be difficult to
detect coil-measured PSOs using velocity thresholds common for
video-based systems [e.g., 10–30 dva/s, 52]: in the present analy-
sis, PSOs were only detected in less than 3% of all coil-measured
saccades (as compared to 90% of all video-measured saccades),
which is why we did not consider separate analyses for different
saccade definitions in search-coil data. As the data has been made
publicly available for more in-depth analyses (https://osf.io/n3
6fx/), it may be an interesting avenue for future research to refine
the assumptions of the proposed model [37, 38] by applying more
physiological plausible forcing profiles based on models of moto-
neural activity [4, 12].

Finally, given that the fitting procedure described above is quite
complex, one could ask whether there may be simple statistical
heuristics that a researcher can use to approximate the metrics of
eyeball motion from the metrics observed in video-based eye track-
ing. As already suggested by Deubel and Bridgeman [10], there is a
very tight relationship between the time of the first peak of a PSO
and the offset of a coil-measured saccade, as indicated by high
values of R2 and regression slopes close to β¼1 (Fig. 4a). More
specifically, significantly positive intercepts in the two observers
shown here indicate that PSO-defined saccades may be 1–6 ms
shorter than coil-measured saccades, suggesting that the onset of
the PSO is a valid criterion for the offset of eyeball rotation. In
contrast, the offset of the PSO has little agreement with the offset
of coil-measured saccades as indicated by large systematic overesti-
mation of saccade duration, especially at longer durations, and
considerably larger variance (Fig. 4b). As already evidenced by
previous studies [6, 18, 19], a similar—but in this case quite reli-
able—overestimation occurs for saccadic peak velocity (Fig. 4c) and
(to a lesser degree) for saccadic mean velocity (Fig. 4d). Note that
fitting video-based saccade data with the described model above
can also produce accurate velocity estimates for the underlying
eyeball motion (Fig. 3f).

These results indicate lawful relationships between pupil and
eyeball motion, suggesting that optical measures of gaze position,
previously considered “not suitable for the analysis of saccade
dynamics (main sequence)” [10, p. 536], are in principle able to
provide interpretable estimates of “true” saccade metrics. They also
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suggest that it may really be worthwhile to detect PSOs, as PSO-
defined saccades offsets have proven to be not only more accurate
but also more precise measures for saccade duration. The next two
subsections will thus be dedicated to algorithms that allow eye
tracking researchers to detect PSOs as part of saccades.

2.3 Direction-Based
and Velocity-Based
Detection of Saccades
and Post-Saccadic
Oscillations

There is extensive literature on automated saccade detection. Of
the vast number of algorithms available, each has specific strengths
and capabilities, as well as varying degrees of complexity and accu-
racy. Whereas earlier detection algorithms relied on absolute or
relative thresholds for position, velocity, or acceleration [e.g., 40,
53, 54], more recent algorithms involve covariance [55], binocular
correlation [24], particle filters [56], Bayesian inference [57], or
Markov models, Kalman filters, and spanning trees [58, 59], to
name just a few. Andersson and colleagues [21] have evaluated the
performance of ten different algorithms, among which two algo-
rithms were specifically dedicated to the detection of PSOs
[5, 22]. These two algorithms exhibit high detection performance,
one of them even in the face of smooth pursuit [22], yet they are
relatively complex. Here, we instead describe a comparably simple
sequential approach, in which we first detect saccade candidates
using the popular Engbert–Kliegl (EK) algorithm for microsaccade
detection [40, 41], then identify clusters of such candidates, and
finally detect the PSO based on the direction of the first detected
saccade (Fig. 5a).

The EK algorithm is a velocity-based detection method. Gaze
position data is transformed into a two-dimensional velocity space,
usually using a five-point moving average to reduce sample-to-
sample noise. Even though only data of a single saccade is shown
in Fig. 5b, entire sequences of saccades can be submitted to the

Fig. 4 Statistical relationships between saccade metrics (a: PSO-defined duration, b: Full-defined duration, c:
Peak velocity, and d: mean velocity defined as the quotient of amplitude and duration) measured by video-
based and scleral search-coil systems, based on data from two human observers collected by Drewes and
colleagues [39]. Linear regressions (solid lines) were performed separately for observers 1 (red) and 2 (blue)
on a total of 960 saccades of varying directions. β and β0 indicate slope and intercept and R

2 the coefficient of
determination of each fit
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Fig. 5 Velocity- and direction-based detection of saccades and post-saccadic oscillations. (a) The proposed
pipeline for PSO detection. DPSO and DFull refer to the saccade definitions in Fig. 1b. (b) Gaze position data of a
saccade taken from a hand-labeled dataset recorded using an SMI video-based eye tracking system [also
used in 21–23]. (c) Two-dimensional velocity space of the same saccade. The dashed ellipse indicates the
velocity thresholds ηvx,vy computed based on the median-based standard deviations σvx,vy. (d) Absolute
sample-to-sample velocity in degrees of visual angle replotted as a function of time. Gray-shaded areas
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procedure. Based on the median-based standard deviation σvx,vy of
all available samples and a user-defined threshold multiplier λ (usu-
ally taking values of 5–10), an elliptic velocity threshold ηvx,vy is
computed (Fig. 5c). A velocity sample above this threshold is
classified as belonging to a saccade, according to the test function

sðiÞ ¼ ðvx,iηvx
Þ2 þ ðvy,iηvy

Þ2
& '

> 1 [60, Eq. 4]. As velocity may cross the

threshold simply due to noise, sequences of above-threshold sam-
ples must have minimum length (mindur, defined as a number of
samples) to be accepted as saccade candidates. As shown in Fig. 5d,
this approach based solely on velocity may result in the detection of
two clustered saccades, instead of detecting one saccade with a
PSO. In fact, large PSOs may well reach peak velocities of
100 dva/s and durations of 40 ms [5], thus easily satisfying stan-
dard criteria for (micro-)saccade detection.

How should the researcher deal with this situation? In Fig. 5a,
we propose a simple processing pipeline: after optional preproces-
sing of the data, which may contain filtering, interpolation (note
that in-built velocity smoothing in the EK algorithm only works for
uniformly sampled data), and removal of blink artifacts [e.g., 61],
saccade candidates are identified. Even though we chose the EK
algorithm (due to its prevalence in the field), any saccade detection
algorithm may be used at this stage. To determine whether clusters
of saccades (as in Fig. 5d) are present in the data, we check for two
or more saccade candidates with only a small number of below-
threshold samples in between. This clustering distance can be cho-
sen by the user. Although fixation durations below 80 ms are quite
rare, they may occur [62], which is why we recommend to mini-
mize the clustering distance (e.g., 5–20 samples, depending on the
sampling rate) to avoid the erroneous clustering of separate sac-
cades occurring in close succession. If clustered saccades are
detected, there are essentially two options. First, one may discard
the second part of the clustered saccade (i.e., the PSO), leading to a
saccade offset that is defined as the time the velocity first falls below

!

Fig. 5 (continued) represent saccade intervals in which samples are above the velocity threshold η (dashed
horizontal line). The arrow indicates the minimum velocity of the merged interval. (e) Sample-to-sample
direction in degrees relative to the overall saccade direction θsac (solid horizontal line) and defined direction
thresholds θmin and θmax (dashed lines). The arrow indicates the first sample to cross the direction threshold
((60 degrees), which coincides with the minimum velocity of the merged interval for this particular saccade
(arrow in panel d). (f ) Proportion of PSOs correctly detected in hand-labeled (upper row) and simulated (lower
row) datasets. Color indicates the three proposed detection criteria: offset of the first saccade in a cluster of
two saccades (purple), first direction sample to deviate from the overall saccade direction (blue), and sample
with the lowest velocity of the entire saccade cluster (green). (g) PSO onset detection error, defined as the time
between the coded PSO onset (upper row: human hand-labelers and lower row: model-based simulation) and
detected PSO onset. Positive values indicate that detected onsets occur later than coded onsets. The shaded
areas indicate ( SEM
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the defined threshold and may thus be closely related to the peak of
the PSO. Second, one may choose to merge the two clustered
saccade candidates and subsequently perform a dedicated PSO
detection. For PSO detection, we propose two possible criteria:
the minimum-velocity criterion determines the lowest sample-to-
sample velocity in the entire merged saccade interval (not including
the first and last velocity samples; Fig. 5d), and the direction-
inversion criterion detects the point where the sample-to-sample
direction first significantly deviates from the overall saccade direc-
tion θsac, that is, when crossing a direction threshold defined by
θmin and θmax (Fig. 5e). This direction threshold can be adjusted by
the user by setting the parameter θ (θmin,max¼ θsac( θ). It becomes
clear in Fig. 5b [but see also 63, Fig. 20] that a consequence of
PSOs is the brief inversion of direction relative to the overall
saccade direction, as defined by the mean direction of all saccade
samples from the respective saccade onset position (Fig. 1a). Code
for this procedure (and the one described in Subheading 2.4) can
be found at https://github.com/richardschweitzer/
PostsaccadicOscillations.

How does the proposed detection pipeline perform, and are
there differences between the three detection criteria? To answer
these questions, we performed a validation procedure using
300 hand-labeled saccades with PSOs [21–23]. As manual coding
may be prone to subjective biases [64], however, we propose a
second validation approach: based on the introduced modeling
approach (Subheading 2.1), we simulated saccades with PSOs
along with fixation data (see Subheading 2.4) with objective labels
for fixations, saccades, and PSOs, thus providing a model-based
ground truth. Results suggest that PSOs were correctly detected at
high rates in both hand-labeled and simulated saccades; the best
detection criterion turned out to be the inversion of direction
(Fig. 5f). Clearly, simply relying on the detection of a saccade
cluster (in order to subsequently remove its second saccade) proved
a suboptimal strategy, as saccades and PSOs are not invariably
detected as two separate events. What is more, PSOs may not
have sufficient velocity and duration to be detected as an event to
begin with. Furthermore, simply detecting minimum velocity
within a saccade cluster had disadvantages, as sample-to-sample
velocity signals can be extremely noisy, especially when measured
with high sampling rates [43]. We also found a clear tendency in
both datasets that detection performance decreased at very small
and very large saccade amplitudes. This is most likely owing to the
fact that very short saccades and microsaccades, as well as their
PSOs, produce only weak velocity signals which may well remain
undetected within normal tracking noise. Large saccades, in turn,
produce smaller PSO amplitudes that may be missed due to their
reduced prominence [20]. Direction inversion also proved to be
the most accurate criterion for PSO onset, both for hand-labeled
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and for simulated saccades, exhibiting absolute errors of only 1 ms
across saccade amplitudes (Fig. 5g). In contrast, results for the two
velocity-based criteria look less convincing. On the one hand, they
show delayed PSO onset detection by up to 5 ms relative to human
coders. On the other hand, with simulated data, velocity-based
criteria detect PSO onsets prior to their actual onset, which is
consistent with theoretical assumptions, as velocity should fall
below the velocity threshold defined by the EK algorithm before
it approaches zero and before the direction inversion takes place.
We can speculate that human coders might have used different
subjective criteria; in fact, it seemed that they would often define
PSO onset as occurring slightly before the first peak of the PSO
(cf. Fig. 6d). Regardless of this mismatch, detection of PSOs, based
on saccade clustering and the application of minimum-velocity or
(even better) direction-inversion criteria, is feasible and may well be
used as an extension to various saccade detection algorithms.

2.4 Simulation of
Saccades and Post-
Saccadic Oscillations
for Classification-
Based Detection

To date, the best saccade detection algorithms use machine
learning techniques [66, 68] or even deep neural networks
[69, 70], thereby achieving human-like classification performance.
These algorithms have to be trained on annotated eye movement
data, usually provided by hand-labeling performed by human
experts. Although this procedure is widely considered the gold
standard [64], it is extremely time-consuming, especially when
high inter-rater reliability has to be reached despite subjective
biases. This issue could be alleviated if saccade and fixation data
could be generated by models in a realistic manner. We take this
approach here as it has evident advantages: data produced by a
model has an actual mathematically verifiable ground truth, and
the modeler retains full control over the signal’s quality, so that, for
instance, effects of noise or missing samples can be systematically
investigated [32, 42].

To allow for such investigations, we implemented a multi-
purpose saccade simulator (Fig. 6a, b). Sequences of saccades can
be reproduced if only approximate sequential fixation positions
(and optionally fixation durations) are known. For each saccade,
eight parameters have to be supplied to describe its trajectory (see
Subheading 2.1 for a description of these model parameters; V is a
Boolean value indicating whether the viscosity-based variant of the
model should be used). Note that these parameters could be in
principle the same for the entire sequence of saccades. For each
fixation, four parameters are specified to generate fixational drift
patterns that are common to fixation periods [28, 71]. Here we
used a self-avoiding random walk model by Engbert and colleagues
[65] to approximate these drift patterns. This model assumes a
two-dimensional quadratic lattice with a width of L pixels (which
should amount to approximately 2 dva in a given setup) in which
each field has a certain activation h. In our version of the model,
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Fig. 6 Accurate detection of saccades and PSOs using linear classifiers trained on simulated data. (a) Original
unlabeled saccade data. (b) Using a saccade simulation algorithm, incorporating models for saccades and
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each field is preactivated with a random number drawn from a
Gaussian distribution with mean μ and standard deviation σ
(where negative values are set to 0). In addition to varying activa-
tions, the lattice is governed by a quadratic potential with the

formula uði, jÞ ¼ λL ði%i0
i0
Þ2 þ ð j% j o

j o
Þ
2

& '
[65, Eq. 3], where i0 and

j0 represent the lattice’s center coordinates and λ is the steepness of
the potential. Starting at (i0, j0), a random walker moves around in
the lattice, always choosing its future position based on the lowest
current activation and potential: ði0, j 0Þ ¼ argmin hkl þ uðk, lÞf g ,
where k¼ i(1, l¼ j(1 [65, Eq. 4]. Crucially, each visited position
hij is increased by 1 in its activation, so that the walker will only
return to this position after some time, that is, after the activation
has decayed with hkl! (1% ε) # hkl [65, Eq. 2] per step (each step
being one data sample). To model drift movements on a miniature
scale during a fixation interval, the user simply has to specify the
decay rate ε, the steepness of the gradient λ, and the distribution (μ,
σ) for the pre-activation of the lattice grid. As these drift move-
ments can (depending on the specified sampling rate) nevertheless
result in comparably high velocities, an optional five-point moving
average can be used to reduce noise (Fig. 7).

By simulating fixational drift and saccades, the user can produce
realistically looking eye tracking data, which can then be used to
evaluate detection algorithms (Fig. 5f, g) or to train models for
classification. Here we propose a novel detection procedure based
on simulation and classification that involves five major steps and is
illustrated in Fig. 6. As a first step, we use the saccade simulator
described above to generate saccade and fixation data that is similar,
but not necessarily identical to the original data (Fig. 6a, b).
Importantly, this simulated data includes model-generated event
labels (FIX, PSO, SAC) that will later serve as the dependent
variable in the model training phase. As a second step, the simulated
gaze position signal (x, y) at each time point k (Fig. 6b) must be
transformed into a vector of meaningful features that can be used as
independent variables. To achieve that, we followed an approach
proposed by Zemblys and colleagues [66] that integrates position
data using a temporal window with a width of w samples. Note that

!

Fig. 6 (continued) PSOs [37, 38], as well as models for fixational drift [65], training data with class labels is
produced. (c) Feature extraction is performed for every single data sample of the simulated data by integrating
over a window with a width of w [66]. These simulated features are used to train a linear support vector
machine [67]. (d) The same feature extraction is performed on the original unlabeled data. Based on the
resulting features, the previously trained classifier may predict class labels (dashed lines indicate hand-
labeled event onsets). (e) Cohen’s κ as a metric for inter-rater agreement as a function of saccade amplitude.
(f) Confusion matrices (upper: human vs. classifier and lower: human vs. human), computed across all
saccades and window sizes. (g) Top row: PSO onset and saccade offset detection errors (classified onset
time—hand-labeled onset time) produced by classifiers and human experts. Bottom row: relationship
between hand-coded and classifier-coded saccade durations for duration definitions DFull and DPSO (Fig. 1b)
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wmay vary depending on the type of feature. For instance, the root
mean square (rms) feature at time point k was computed based on
all samples in the range k % w

2 , k þ
w
2

( )
, whereas the difference of

mean position (mean-diff) was defined as the absolute difference
between the mean gaze position in k % w, k½ * and the mean gaze
position in k, k þ w½ *: The features absolute velocity (vel) and accel-
eration (acc) used a 12-ms window, in order to be able to represent
brief saccades [5], whereas the variance of sample-to-sample direc-
tions (dirvar), that is, 1–the mean resultant length of the circular
distribution [72], used a window of 22 ms to adequately capture
direction changes. After this step, we extracted 13 features per
window size from simulated data [see ref. 66, for a full list of
features], covering a wide range of possible indicators of fixations,
saccades, and PSOs (Fig. 6c). Now that both event labels and
features (each ideally centered and scaled) are available, they can
be used to train classifiers. The third step is thus the model training
phase. Here, we used a linear support vector machine
(L2-regularized, L2-loss, primal), as implemented in the liblineaR
package [67], but note that a wide range of other (potentially more
effective) classifiers have been successfully employed for this task
[68]. In the fourth step, the same feature extraction procedure,
which has previously been used on simulated data, is now applied to
the original unlabeled data. Finally, in the prediction step, the
trained classifier can be used to determine an event label for each
sample of the original data. Note that this procedure can be
repeated a number of times, each time with slightly different

Fig. 7 Fixational drift patterns produced by the self-avoiding walk model
proposed by Engbert and colleagues [65]. To reduce the discreteness of the
steps (transparent lines) and reduce the signal’s velocity, we applied a five-point
moving average smoother. To approximate physiological ocular drift even better,
the number of steps per time interval and steps per degree of visual angle may
be adjusted, as well as the model parameters decay rate ε, gradient steepness
λ, and mean and standard deviation of the grid initialization distribution (μ, σ)
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training sets, to make individual predictions more robust or to
determine samples with ambiguous class attributions (Fig. 6d,
upper rows).

One may now ask how well this procedure performs compared
to manual coding performed by human experts. To answer this
question, we ran the proposed procedure on 300 hand-labeled
saccades with PSOs [extracted from a dataset used by 21–23],
each time choosing the most likely of 100 labels predicted by
uniquely trained classifiers. To allow for a fair comparison between
human coders and classifiers, we introduced the agreement
between the two human coders, which had previously manually
labeled the data, as a reference. As indicated by Cohen’s κ (i.e.,

κ ¼ po%pe
1%pe

, where po is the observed proportionate agreement and pe
the expected proportionate agreement, if labelers rated based on
chance [73]), these two coders do not agree completely—most
likely due to individual criteria—but show κ around or above 0.8,
which is generally considered “almost perfect” [74, p. 165],
although their agreement slightly decreased at very short and
large saccade amplitudes (Fig. 6e). Importantly, classifiers were
able to reach near-human coding performance, even though this
depended on the window sizes that were used. By trend, using
short or only one window size led to lower performance, whereas
maximum classification accuracy was found with window widths
ranging from 50 to 100 ms. Note that each sample was classified
independently from its surrounding samples. The introduction of
transition probabilities, minimum durations for events, or even
simple rules, such as “PSOs do not occur in the midst of a fixation
period” could thus further increase coding performance. In addi-
tion, it was shown that, compared to linear support vector
machines, decision trees and random forests were even more suit-
able classifiers for this kind of task, reaching up to κ¼0.9 when
being trained and evaluated on hand-labeled data [68]. It is thus
well possible that the procedure explained here could be further
optimized. Figure 6f shows the confusion matrices, which indicate
in which cases humans and classifiers (upper table), as well as
humans and humans (lower table) disagreed: Clearly, whereas sac-
cades and fixations were extremely well separated, most mismatches
occurred when coding PSOs. This pattern was present for both
human–classifier and human-human rating agreements, suggesting
that it is inherently difficult, even for human eye tracking experts, to
determine PSO onset after saccades, as well as fixation onsets after
PSOs. In addition, it is quite likely that detection criteria differed
not only between human labelers but also between the hand-
labeling procedure [for the custom Matlab-based GUI, see 21,
Fig. 1] and our model-based simulations. As suggested by
Fig. 6d, manually coded PSO onsets do not necessarily coincide
with the first peaks of PSOs which would be determined by the
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saccade simulator. Similarly, PSO durations may be overestimated
by algorithms, as these may still pick up spurious velocity, accelera-
tion, or direction signals that a human coder would disregard. To
evaluate these inherent differences, we compared saccade metrics
resulting from classification with those resulting from manual cod-
ing. Indeed, saccade duration was slightly overestimated by virtu-
ally all classifiers (Fig. 6g). This was caused by an earlier detection of
saccade onsets (by on average 2 ms), as well as a later detection of
PSO offsets (DFull definitions) by up to 8 ms, most likely due the
classification routine’s more fine-grained resolution. In fact, an
identical result was found by Andersson and colleagues [21], who
showed that two previously proposed PSO-sensitive saccade detec-
tion algorithms [5, 22] overestimated PSO duration (compared to
human coders) to a similar extent. Yet again, PSO onset (DPSO

definitions) proved a more reliable criterion for saccade offset, as
estimates of saccade durations, as well as onset errors were smaller
and less variable (Fig. 6g).

Here we have shown that it is not only well possible but also
highly efficient to use simulated saccades, PSOs, and fixations as
training data for classification-based approaches of automatic detec-
tion of events in eye tracking data. All of these relatively recent
classification-based approaches [66, 68–70] assumed manually
coded eye tracking data as a ground truth, even though the validity
of this type of reference has been questioned, as empirical data can
indeed be ambiguous and even human experts may have individual
detection criteria [64]. Thanks to sophisticated biophysical models
[37, 38, 44, 65], simulation of eye movement data may be a feasible
alternative—not only because of mathematical tractability but also
because of greatly reduced effort for the researcher.

3 Conclusions

In the first part of the chapter, we have introduced physiologically
plausible models [37, 38] capable of describing relative pupil and
eyeball motion (Subheading 2.1) that—simply based on biophysi-
cal premises—provide an account for post-saccadic oscillations
(PSOs). Despite their high relevance to the field and fitting well
with previous empirical results, these recently proposed models
have not yet had any impact on the eye tracking community
(at least not to our current knowledge). One could speculate that
this is owing to the fact that the models in question have neither
been implemented in a ready-to-use manner nor have their predic-
tions been evaluated in a critical comparison with suitable empirical
data. To bridge this gap, we provided openly accessible code which
can be used to generate and fit saccade trajectories with PSOs.
Capitalizing on co-registered scleral-coil and video-based eye track-
ing data [39], we quantified to what extent models fitted on the
pupil signal of a saccade could predict the eyeball motion of that
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very same saccade. We found that the model predicted eyeball
motion with reasonably high accuracy, closely reproducing main
sequence relationships of PSO-defined saccade duration and sac-
cadic peak velocity for medium-sized saccades, whereas failing to do
so for very short saccades. We speculate that this is due to the
forcing profiles of short saccades, which may also exhibit dynamic
overshoots [14, 16, 18, 19]. It would be an intriguing avenue for
future research to expand and improve the current models to more
accurately match empirical saccade data. In fact, a near-perfect
matching would mean considerable progress for the field, as that
would allow for separate saccade definitions based on video-based
data alone: on the one hand, definitions based on the motor com-
mands executed by the extraocular muscles and, on the other hand,
definitions based on the visual consequences induced by the move-
ment of the elastic parts of the eye [11, 30]. At some point, these
definitions may even be operationalized in future investigations of
retinal and extra-retinal contributions to visual perception around
and during saccades.

In the second part of the chapter, we described (and provided
code for) algorithms that allow for the detection of PSOs, which
may be helpful or even crucial for a number of applications. For
one, we have shown that PSO-defined saccade durations closely
match saccade durations measured by scleral search coils [cf. 10],
follow the main sequence more tightly, and are less variable. There-
fore, when close or conservative approximations of saccade offset
are needed, detecting PSOs may drastically improve data quality.
Examples of such applications include determining secondary sac-
cade latencies [75–78], making sure that a presentation sequence
has occurred strictly during a saccade [32] or measuring electro-
physiological potentials, such as lambda waves, that are locked on
saccade offset [79, 80]. While PSO detection based on direction
inversion proved a simple yet efficient solution, which can in prin-
ciple be added onto most detection algorithms, saccade detection
based on machine learning is the current state of the art. Using
simulated saccade data with model-generated labels, practitioners
in the field may be able not only to evaluate their custom detection
methods but also to train a wide range of statistical learning models
without relying on manually coded data. While manual coding will
remain the gold standard for various reasons, tests on such simula-
tion data—due to their objectivity and tractability—may serve as
proofs of concept and provide insights into how humans detect
events in eye tracking data.

Finally, PSOs are prominent features of virtually any video-
based eye tracking dataset. As they can be regarded as separate
events, eye tracking researchers should make an informed choice
as to whether they want to consider them to be part of either
saccades or fixations and explicitly specify their approach. Here we
raise awareness that the treatment of PSOs can make a real
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difference, not only conceptually but also with respect to the inter-
pretation of saccade metrics and experimental results. With this
chapter and the methods specified in it, we hope to enable eye
tracking researchers to make the most of their data by actively
defining, modeling, and detecting saccades—not despite, but with
the help of post-saccadic oscillations.
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