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Abstract
To investigate visual perception around the time of eye movements, vision scientists manipulate stimuli contingent upon the onset
of a saccade. For these experimental paradigms, timing is especially crucial, because saccade offset imposes a deadline on the
display change. Although efficient online saccade detection can greatly improve timing, most algorithms rely on spatial-
boundary techniques or absolute-velocity thresholds, which both suffer from weaknesses: late detections and false alarms,
respectively. We propose an adaptive, velocity-based algorithm for online saccade detection that surpasses both standard tech-
niques in speed and accuracy and allows the user to freely define the detection criteria. Inspired by the Engbert–Kliegl algorithm
for microsaccade detection, our algorithm computes two-dimensional velocity thresholds from variance in the preceding fixation
samples, while compensating for noisy or missing data samples. An optional direction criterion limits detection to the instructed
saccade direction, further increasing robustness. We validated the algorithm by simulating its performance on a large saccade
dataset and found that high detection accuracy (false-alarm rates of < 1%) could be achievedwith detection latencies of only 3ms.
High accuracy was maintained even under simulated high-noise conditions. To demonstrate that purely intrasaccadic presenta-
tions are technically feasible, we devised an experimental test in which a Gabor patch drifted at saccadic peak velocities. Whereas
this stimulus was invisible when presented during fixation, observers reliably detected it during saccades. Photodiode measure-
ments verified that—including all system delays—the stimuli were physically displayed on average 20 ms after saccade onset.
Thus, the proposed algorithm provides a valuable tool for gaze-contingent paradigms.
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In the field of active vision, most eyetracking experiments
study visual perception around goal-directed rapid eye move-
ments, so-called saccades. Specifically, when investigating
trans-saccadic or intrasaccadic perception, an experimental
paradigm has to be implemented in a way that a stimulus or
the configuration of stimuli is manipulated online (i.e., in real
time) and gaze-contingently, starting with the onset of a sac-
cade (Higgins & Rayner, 2015; Hollingworth, Richard, &
Luck, 2008; Melcher & Colby, 2008; Prime, Vesia, &
Crawford, 2011; Wolf & Schütz, 2015). Because saccades
are rapid and brief events, often with a skewed velocity profile

(Figs. 1a and 1b), this is not always as trivial as it may sound.
Every computational step between an eye movement and a
change in the display adds undesired delays, and every short-
cut (e.g., through rough approximations) may lead to false
alarms—that is, the detection of a saccade when none has
happened. Here we will discuss an algorithm that realizes
early online saccade detection without sacrificing reliability,
and is thus able to greatly reduce the overall delay between
saccade onset and display change.

To elucidate the challenge that gaze-contingent paradigms
pose with regard to timing, let us consider a typical trans-
saccadic experimental scenario: Participants are instructed to
make a saccade toward a colored patch at a 10-deg of visual
angle (dva) eccentricity, resulting in saccades with average
peak velocities of 300 dva per second (dva/s) and durations
of 40 ms (Collewijn, Erkelens, & Steinman, 1988). When
trying to manipulate the color of the patch during the saccade,
so that upon landing an updated stimulus with a new color is
displayed to the observer, we as experimenters have to con-
sider at least four additive sources of latency in our experi-
mental setups (Fig. 2) in order to make the presentation dead-
line of each saccade offset.
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First, the online access to gaze position data is delayed.
This end-to-end sample delay includes not only the time taken

for a physical event to be registered, processed, and made
available online by the eyetracking system (e.g., capturing

Fig. 2 Schematic illustrating four categories of latencies in a temporal sequence (top to bottom) occurring when display changes are locked to saccade
onset. Factors influencing the magnitude of the delays are shown in italics.

Fig. 1 Illustration of different saccade detection techniques, based on an
exemplary saccade. (a–b) Plots of position and velocity profiles of a
horizontal, rightward 15-dva saccade, sampled uniformly at 500 Hz.
Color represents the sample-to-sample velocity (yellow = peak velocity).
(c) Illustration of saccade detection using a spatial-boundary technique.
Saccades are detected once gaze position reaches past the spatial bound-
ary, defined by a 2-dva radius (dotted circle) around the instructed fixation
position. (d) Illustration of an absolute-velocity threshold. Gaze position
data are transformed into two-dimensional velocity space, and a saccade
is detected once velocities exceed a predefined value—for example, 40
dva/s in this example. (e) Illustration of the proposed algorithm. Gaze
position data are resampled to a uniform sampling rate, transformed into

two-dimensional velocity space, which is smoothed by a five-point run-
ning-average filter. Median-based standard deviations are computed sep-
arately for the horizontal and vertical dimensions, forming an elliptic
velocity threshold ηvx,vy. An optional direction criterion θ (here, 45°)
can restrict detection to a range around the instructed saccade direction
θideal (e.g., computed via the fixation and saccade landing positions xyfix
and xytar), with θmax and θmin as the upper and lower boundaries.
Moreover, the user may specify, in order to detect a saccade, how many
samples are needed that satisfy both the velocity and direction criteria. In
this example, we have numbered the first four samples for which this is
the case.



an image of the eye, fitting the pupil and corneal reflection,
and extrapolating gaze position), but also the time needed to
retrieve the data via Ethernet, USB, or analog ports. Although
the retrieval time is usually negligible (i.e., on the order of
microseconds), the total end-to-end sample delay can be con-
siderable. According to manufacturer manuals, it may range
from 1.8 to 3 ms in the EyeLink 1000 (SR Research, 2010),
from 1.7 to 1.95 ms in the Trackpixx3 (VPixx Technologies,
2017), from 3 to 14ms in the EyeLink II (SR Research, 2005),
and up to 33ms in the Tobii TX Series (Tobii Technology AB,
2010).

Second, as we need a reliable, and thus often a more con-
servative, criterion to decide whether a saccade has actually
been initiated, the onset of the saccade detected online usually
lags behind the onset of the saccade detected offline.
Henceforth, this delay will be referred to as the saccade de-
tection latency. Techniques to detect saccades during experi-
ments often involve an invisible spatial boundary (Fig. 1c) at
some distance from the initial fixation point that the gaze
position has to cross (Rayner, 1975). This widely used tech-
nique (e.g., Collins, Rolfs, Deubel, & Cavanagh, 2009;
Kalogeropoulou & Rolfs, 2017; Szinte & Cavanagh, 2011)
usually provides reliable but late saccade detection (~ 15 ms
after the actual saccade onset at a sampling rate of 500 Hz for a
boundary 2 dva from fixation; see Fig. 5a in the Results). An
alternative to the boundary technique is based on velocity
thresholds (Fig. 1d): The measured speed of the eye must
exceed a certain value, such as 30 dva/s (Deubel, Schneider,
& Bridgeman, 1996; Han, Saunders, Woods, & Luo, 2013;
Panouillères et al., 2016), 40 dva/s (Castet, Jeanjean, &
Masson, 2002), or even 100 dva/s (Arabadzhiyska, Tursun,
Myszkowski, Seidel, & Didyk, 2017), so saccades can be
detected much earlier, but they often suffer from increased
false alarm rates.

Third, once we have detected a saccade in the data retrieved
online, the stimulus has to be drawn to the graphics card’s
back-buffer and the flip with the front-buffer has to be syn-
chronized with the display’s vertical retrace (Kleiner,
Brainard, & Pelli, 2007). This detect-to-flip latency is deter-
mined by the refresh rate of the monitor and depends on the
time of detection within the refresh cycle. Novel technologies
such as G-Sync are able to reduce this latency to the
submillisecond range by allowing flips as soon as rendering
is complete, without having to wait for the screen refresh
(Poth et al., 2018).

Fourth, there is the flip-to-display latency—that is, the time
from the execution of the flip until the physical stimulus pre-
sentation on the screen. Whereas the transfer of the entire
video signal takes up to one frame duration, the display’s
reaction time can additionally increase the flip-to-display la-
tency, as well as introduce temporal jitter.

Taking into account all sources of delay (e.g., a 5-ms end-
to-end sample delay using an EyeLink II at 500 Hz with

normal link filtering + 15-ms detection latency using a bound-
ary technique + 5-ms mean detect-to-flip latency with a 120-
Hz monitor + 8.3-ms flip-to-display latency), the physical
change will occur in the last quarter of the 40-ms saccade.
Because both gaze-contingent displays and saccade profiles
can be subject to considerable variance, we thus increase the
risk of achieving a postsaccadic instead of the intended
intrasaccadic display change. Failure to acknowledge or con-
trol these latencies may thus lead to erroneous results and
unwarranted conclusions.

Although most of the latencies mentioned above largely
depend on the specific hardware used, we can optimize the
saccade detection latency to achieve low-latency gaze-contin-
gent presentations. Crucially, the choice of the saccade detec-
tion criterion determines both the timing and the reliability of
the experimental paradigm: Whereas a conservative detection
criterion (e.g., a spatial boundary) may provide reliable but
late detection, a liberal detection criterion (e.g., a low
absolute-velocity threshold) may lead to early detection at
the cost of increased false alarm rates. This may become es-
pecially relevant when detecting saccades based on velocity
using high sampling frequencies, as any error in gaze position
divided by a shorter sampling interval will lead to amplified
velocity estimates (Han, Saunders, Woods, & Luo, 2013). To
achieve reliable online detection, velocity thresholds would
therefore have to be manually adjusted to the precision and
sampling frequency of the eyetracker, as well as to the
situation- and participant-dependent noise levels (see also
Engbert & Mergenthaler, 2006). To date, no algorithm pro-
vides both fast and early online saccade detection while at the
same time remaining reliable in noisier conditions.

Here we present a velocity-based online saccade detection
algorithm that adaptively estimates noise levels on the basis of
preceding fixation data to provide robust results in the pres-
ence of random sample-to-sample noise, dropped samples,
blinks, and fixational eye movements, while allowing its user
to flexibly adjust the detection criterion to the specific exper-
imental situation. We tested the performance of the algorithm
and the impact of various parameter combinations and noise
levels in a large-scale simulation with more than 34,000 sac-
cades, and compared the algorithm to boundary techniques
and absolute-velocity thresholds.We then present an objective
and perceptual test for reliable, gaze-contingent, and strictly
intrasaccadic presentations that underlines the algorithm’s
usefulness in real-time experimental scenarios.

The proposed algorithm

Online saccade detection relies on the continuous sampling of
gaze position data (x, y) and the corresponding timestamps (t)
throughout each trial of the experiment. Gaze position data
collected during fixation is used to establish a threshold to
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demarcate the transition from fixation to saccade. Following
Engbert and Kliegl’s widely used algorithm for microsaccade
detection (Engbert & Kliegl, 2003; Engbert & Mergenthaler,
2006), the algorithm thus detects the onset of a saccade based
on an elliptical, two-dimensional velocity threshold ηvx,vy
(dotted line, Fig. 1d), as defined by the product of the
median-based standard deviation of horizontal and vertical
gaze position dimensions (σvx, σvy) and a free scaling param-
eter λ to adjust the velocity criterion.

ηvx;vy ¼ λ⋅σvx;vy

In addition, the user may provide a parameter k specifying
how many of the most recent of all velocity samples must
exceed the defined threshold. That way, robustness against
false alarms due to noise-related velocity peaks is increased.
In case the user intends to limit detection of saccades to an
instructed saccade direction (θideal), which is often the case in
controlled experimental paradigms, the algorithm allows for
specification of an additional direction criterion θ that deter-
mines the direction range around the ideal saccade direction
that individual velocity samples are allowed in (dashed lines,
Fig. 1d). This direction criterion can be used to avoid false
detections of the instructed saccade as a consequence of other
eye movements events that may satisfy the velocity criterion,
such as blinks or microsaccades.

To make the algorithm suitable for online applications, two
important features were implemented. First, owing to the fact
that during online experiments it is rarely possible to retrieve
every single data sample, missing position samples are linear-
ly interpolated, either to a sampling rate specified by the user
or to a sampling rate computed on the basis of the number of
samples retrieved in a given time. Second, two-point velocity
samples are computed (to avoid edge velocities of zero) and
then smoothed by a five-point running average to reduce the
impact of high frequency noise (Engbert & Mergenthaler,
2006). To not overestimate the first and most recent velocity
samples, the vector edges are padded with repetitions of the
first and the most recent samples, respectively. Subsequently,
based on smoothed velocity samples, the median velocities (in
most cases equaling zero) and the median-based standard de-
viations (σvx, σvy) are computed as described by Engbert and
colleagues (Engbert & Kliegl, 2003; Engbert &Mergenthaler,
2006; Engbert, Rothkegel, Backhaus, & Trukenbrod, 2016):

σvx;vy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

vx;y � vx;y
� �� �2

D E

r

The brackets 〈.〉 stand for the median estimator. To optimize
processing speed, we use the quick select algorithm for medi-
an selection (Press, Teukolsky, Vetterling, & Flannery, 2007).

To determine whether a saccade is ongoing, only the most
recently retrieved k samples (k has to be defined by the user
beforehand) are tested whether eye velocity exceeds the

specified threshold, which is computed on the basis of all
preceding n–k samples. An ongoing saccade is detected only
if all k samples pass this velocity test criterion vel:

vel ið Þ ¼ vx;n−kþi
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As we mentioned above, in case of the application of an
additional direction criterion dir, the direction of the same
samples must also fall within a direction range specified by
the user.

dir ið Þ ¼ θmax >
�
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� �

⋅
180

π

�

> θmin

On the basis of this equation, the ideal saccade direction
can be conveniently computed using the instructed fixation
and saccade target regions (θideal, Fig. 1e).

The algorithm automatically returns the used velocity
thresholds, as well as (optionally) interpolated position data,
and—if a saccade has been detected—the timestamp and com-
puted eye velocity at detection. Since online saccade detection
by definition occurs after saccade onset, and lower detection
threshold are more susceptible to noise, the algorithm also
provides an estimate for the actual saccade onset by tracing
back in time one sample that falls below another velocity
threshold—that is, the product of a user-defined threshold
parameter λonset (not necessarily the same as the λ used for
saccade detection) and the computed median-based standard
deviation σvx,vy. This two-step procedure (Arabadzhiyska
et al., 2017; Dorr, Martinetz, Gegenfurtner, & Barth, 2010)
allows the user to get real-time access to a reliable timestamp
of saccade onset, for instance to provide feedback on saccade
latency in a certain trial, to trigger a display change at a
predefined time relative to saccade onset, or to fit ongoing
saccade trajectories (Han et al., 2013).

To code is openly available online at https://github.com/
richardschweitzer/OnlineSaccadeDetection. It uses standard
C libraries and can thus be used across platforms. We
provide a module in Python, as well as an implementation to
be compiled as a mex-function in Matlab (The Mathworks,
Natick, MA, USA).

Materials and method

Simulation

Data

For validation of the algorithm, we compiled a dataset
consisting of a total of 34,183 saccades, measured from par-
ticipants’ dominant eye. The data was collected from two past
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experiments (i.e., Schweitzer & Rolfs, 2017; Watson,
Schweitzer, Castet, Ohl, & Rolfs, 2017), as well as from one
pilot study. Using an EyeLink II at a sampling rate of 500 Hz,
a number of 17,090 horizontal (left- and rightward) saccades
with an instructed amplitude of 14.6 dva, as well as a number
of 10,809 saccades in eight different directions (cardinal and
intercardinal directions) and of 10 dva amplitude, entered
analysis. Furthermore, collected with an EyeLink 1000+ at a
sampling rate of 1000 Hz, we included 6,284 additional sac-
cades in the same eight directions, but of 8-dva amplitude.

Pre-processing of the data used for the validation (offline
data analysis) involved three steps. First, trial data was re-
duced to those samples between the onset of successful fixa-
tion (preceding the saccade go signal) and 100 ms after the
participant’s gaze first reached the target area (boundary with
2-dva radius around saccade target). Second, the onset and
offset of the saccade—defined as the ground truth in all
analyses—was detected using the Engbert–Kliegl algorithm
(Engbert & Kliegl, 2003; Engbert &Mergenthaler, 2006) with
a threshold parameter of λ = 5 and a minimum duration of
16 ms (eight samples at 500 Hz and 16 samples at 1000 Hz).
Trials, in which saccades could not be detected or in which
more than one saccade occurred within the chosen time inter-
val were excluded. Third, eye movement data was trans-
formed from the setup-specific pixel values to degrees of vi-
sual angle. Subsequently, position data and timestamps were
normalized relative to the detected onset of the saccade to
allow for comparisons between saccades of different ampli-
tudes and durations. Saccade data and code used for simula-
tions are available on the Open Science Framework: https://
osf.io/3pck5/.

Procedure

To simulate the performance of the online detection algorithm,
we divided the data of each trial in saccade absent (i.e., prior to
saccade onset as detected offline) and saccade present (i.e.,
after saccade onset as detected offline) segments. The algo-
rithm was then run sequentially on each data sample (ordered
by time stamps) in the respective segment, taking into account
all previous samples for threshold estimation. That way, we
simulated its usage during an experimental trial in which new
data samples are retrieved cumulatively. If saccades were de-
tectedwhile iterating through absent segments, we registered a
false alarm (FA), if not, the trial counted as a correct rejection
(CR). Similarly, if saccades were detected after offline-
detected saccade onset, we registered a correct detection
(hit), if not, the trial counted as a miss. To evaluate the perfor-
mance of the boundary technique (2 dva) and absolute-
velocity threshold (40 dva/s), we used the same procedure.

To explore the behavior of the algorithm in a larger param-
eter space, online saccade detection was tested in both absent
and present segments for every available parameter

combination—that is, threshold parameter λ (levels: 5, 10,
15, 20), samples above threshold needed k (levels: 1, 2, 3,
4), and direction criterion θ (levels: none, 45°, 30°, 15°). In
addition, we convoluted all data samples with Gaussian noise
(SDs: 0, 0.025, 0.05, 0.1 dva) on both horizontal and vertical
dimension and randomly removed a proportion of all samples
(levels: 0, 10, 20, 30%), to simulate eyetracker noise and sam-
ple loss, respectively. This test setup resulted in a total of
1,024 within-saccade conditions. To achieve a fair comparison
between the proposed algorithm and the two traditional tech-
niques, we also tested the performance of the boundary and
absolute-velocity techniques for varying numbers of samples
(levels: 1, 2, 3, 4).

For each within-saccade condition and additionally for
each available sampling rate and saccade direction, we com-
puted detection sensitivity index d' and summary statistics for
detection latency (saccade present segments only) of the three
detection methods—that is, boundary techniques, absolute-
velocity thresholds, and the described online detection algo-
rithm. In addition, we computed an efficiency score (ES)—
that is, the proportion of correct rejections divided by the mean
detection latency relative to the actual saccade onset
(Townsend & Ashby, 1983).

Analysis

As a first step, we computed summary statistics (mean, stan-
dard deviation, standard error) for detection latency (separate-
ly for each online detection technique and within-saccade con-
dition), and median-based standard deviation of velocity sam-
ples. For detection accuracy, we computed d', proportion of
hits and false alarms for each online detection technique and
condition, and estimated their standard error using nonpara-
metric bootstrapping with 2,000 repetitions.

To understand the individual effects of the algorithm’s pa-
rameters on the dependent variables d' and detection latency
(in milliseconds), we applied multiple regression to the aggre-
gated data. Sampling rate was included as an effect-coded
factor (– 0.5 = 500 Hz; + 0.5 = 1000 Hz), while the threshold
factor λ and samples above threshold k were included as con-
tinuous predictors centered around their mean. Direction re-
striction was also included as a continuous predictor (in de-
grees: 180, 45, 30, 15).

To analyze the online detection algorithms’ robustness
against noise, we ran a second multiple regression on detec-
tion accuracy (d' ) and detection latency (in milliseconds),
including five factors and their interactions: sampling rate (ef-
fect-coded: – 0.5 = 500 Hz; + 0.5 = 1000 Hz), Gaussian noise
standard deviation (continuous; 0, 1.5, 3, 6 arcmin), percent-
age of samples dropped (continuous; 0%, 10%, 20%, 30%),
detection technique used (dummy-coded: boundary, absolute
velocity, algorithm [λ = 5], algorithm [λ = 10], algorithm [λ =
15], algorithm [λ = 20]), and the respective number of samples
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needed above criteria (centered, effect-coded: – 1.5 = one
sample; – 0.5 = two samples; 0.5 = three samples; 1.5 = four
samples).

Experimental test

Participants

Ten observers (including the first author) participated in the
experiment. All observers (four female; age range: 22–35
years old) had normal or corrected-to-normal vision. The
study was conducted in agreement with the Declaration of
Helsinki (2008), approved by the Ethics Committee of the
German Society for Psychology, and all observers provided
written informed consent before participation. We tracked par-
ticipants’ dominant eye (eight of ten observers with right oc-
ular dominance) for one session with an average duration of
30 min for 480 trials in total.

Apparatus

The experiment took place in a dimly lit, sound-attenuated
cabin. A Propixx DLP Projector (Vpixx Technologies, Saint-
Bruno, QC, Canada) running at a temporal resolution of 1,440
frames per second and a spatial resolution of 960 × 540 pixels
projected into the cabin onto a 200 × 113 cm screen (Celexon
HomeCinema, Tharston, Norwich, UK). The projector was
connected to the experimental host-PC via a Datapixx3
(Vpixx Technologies, Saint-Bruno, QC, Canada). Observers
were seated at a distance of 180 cm away from the projection
screen with their head supported by a chin rest. Stimulus dis-
play was controlled using the PsychProPixx function from
PsychToolbox (Kleiner et al., 2007; Pelli, 1997), running in
Matlab 2016b (Mathworks, Natick, MA, USA) on a custom-
built desktop computer with an Intel i7-2700K eight-core pro-
cessor, 8 GB working memory, and an Nvidia GTX 1070 Ti
graphics card, running Ubuntu 18.04.1 (64-bit) as the operat-
ing system. The setup is illustrated in Fig. 3. Eyetracking was
performed using an EyeLink 1000+ desktop base system,
tracking participants’ dominant eye at a sampling rate of
2000 Hz. Tracking was controlled during the experiment
using the EyeLink Toolbox (Cornelissen, Peters, & Palmer,
2002). Moreover, we collected data from a photodiode con-
nected to an actiChamp electroencephalographic (EEG) am-
plifier (Brain Products, Gilching, Germany), which was at-
tached to the lower right corner of the projection screen (i.e.,
at approximately 36-dva eccentricity relative to central fixa-
tion), again at a sampling rate of 2000 Hz. To synchronize the
eyetracking and photo sensor data, we applied a DB-25 Y-
splitter cable to simultaneously send triggers of 1-ms duration
to the EyeLink host computer and EEG host computer. During
pre-processing of the data, we used the EYE-EEG Toolbox
(Dimigen, Sommer, Hohlfeld, Jacobs, & Kliegl, 2011) in

EEGLAB (Delorme & Makeig, 2004) to temporally align
both recordings. For all triggers across recordings, we found
a mean absolute misalignment error of 0.38 ms—that is, be-
low one sample.

Stimuli

The stimuli were Gabor patches of vertical orientation
enveloped in a Gaussian window with a standard deviation
of 0.5 dva, presented on a uniform gray background (lumi-
nance of 30 cd/m2). All Gabor patches had a spatial frequency
of 0.5 cycles per degree of visual angle (cpd) and a contrast of
100% (0% in stimulus-absent conditions).

In both saccade and fixation trials (see below and Fig. 4),
the stimulus presentation duration amounted to 20 frames at a
frame rate of 1440 Hz—that is, 13.9 ms. To reduce the tran-
sient elicited by a sudden stimulus onset, the first four and last
four presentation frames, respectively, were used to linearly
ramp up and down stimulus contrast. Presentation locations
were randomly chosen in each trial: Relative to the screen
center, stimuli could appear at an eccentricity of up to 8 dva
within a range of 360 deg. Because we aimed to present stim-
uli at largely the same retinal eccentricities both during sac-
cade and fixation trials, we estimated that intrasaccadic pre-
sentations would be realized in the first half of the saccade and
would therefore be effective when the saccade crossed the
screen’s center vertical midline. In fact, across all participants
the gaze position at stimulus onset was 1.24 dva (SD = 0.92
dva) left of the vertical midline for rightward saccades, and
1.31 dva (SD = 1.0 dva) right of it for leftward saccades.

Throughout their presentation, the Gabor patches were
drifting at a constant speed equivalent to the saccadic peak
velocity, which was automatically computed during the exper-
iment. That is, after each saccade trial, gaze position data
collected during the trial were resampled to 500 Hz and
cropped to the relevant time interval between cue onset and
30 ms after reaching the target region. Second, we used the
Engbert–Kliegl saccade detection algorithm (Engbert &
Kliegl, 2003; Engbert & Mergenthaler, 2006), with a mini-
mum duration of eight samples and λ = 10, to extract the
saccade latency and saccadic peak velocity. Third, we com-
puted the median saccadic peak velocity based on the 30 most
recent saccade trials. Fourth, to investigate the effect of stim-
ulus drift velocity relative to saccade velocity, we defined the
stimulus drift velocity as the resulting median or added or
subtracted 50 dva/s, on the basis of which we then computed
the Gabor’s phase change per frame. This procedure resulted
in three conditions and distributions of stimulus drift velocities
(M–50 = 366 dva/s, M0 = 416 dva/s, M+50 = 466 dva/s),
matching the mean saccadic peak velocity of 419 dva/s.
Although in both conditions drift velocity was computed on
the basis of the most recent saccadic peak velocities, given the
fact that fixation and saccade trials were presented in an
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interleaved manner, the presented drift velocities might have
differed between conditions. This, however, was not the case
[t–50(9) = – 0.28, p–50 = .80; t0(9) = – 1.8, p0 = .10; t+50(9) = –
0.43, p+50 = .68]. To achieve visibility during saccades, the
Gabor patches always drifted in the direction of the saccade
(Castet & Masson, 2000; Deubel, Elsner, & Hauske, 1987).

The instructed fixation location was marked using a full-
contrast black rectangular dot with a white outline and size of

0.4 dva. For the saccade target location, a similar stimulus was
applied, only of twice the size—that is, 0.8 dva.

Procedure

Each participant performed a total of 480 trials, consisting of
240 saccade trials and 240 fixation trials. For each trial type,
there were 120 stimulus-absent and 120 stimulus-present

Fig. 4 Experimental procedures used in saccade and fixation trials. In
saccade trials, observers made a 16-dva saccade, whereas in fixation
trials, observers maintained central fixation. In saccade trials, as soon as
a saccade was detected online, and in fixation trials, after the observer’s
median saccade latency, a Gabor patch (vertical orientation, 0.5 cpd)
enveloped in a Gaussian window with a standard deviation of 0.5 dva

and drifting at the saccadic peak velocity (the median peak velocity of the
30 most recent saccade trials) was presented for 13.9 ms. During stimulus
presentation, a black square was projected onto a photodiode located in
the lower right corner of the screen, generating a signal change in the
photodiode.
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Fig. 3 Setup used to co-register the gaze position and photodiode data.
The stimulus host computer performed onlinemonitoring of gaze position
via the TCP link, stimulus presentation using a ProPixx DLP projector

with a frame rate of 1440 Hz, as well as synchronized triggering of the
electroencephalographic (EEG) and EyeLink host computers, recording
photodiode and gaze position, respectively.



trials, which then contained three stimulus velocity conditions
(sum of the median peak velocity and either – 50, 0, or +50
dva/s) and two stimulus drift directions (leftward vs. right-
ward, in saccade trials according to the saccade direction).
All trials were presented in interleaved and randomized order.

Saccade trials Each saccade trial (Fig. 4, left sequence) began
with the display of two dots (see the Stimuli section), of which
the smaller one represented the fixation location and the larger
one the saccade target. Both dots had a horizontal eccentricity
of 8 dva relative to the screen center. After successful fixation
within a 2-dva radius around the fixation dot for 450 ms,
followed by a random delay of 50 to 150 ms, both dots disap-
peared from the screen—that is, the saccade cue. Participants
were instructed to make a saccade (16 dva) toward the remem-
bered target location right after the disappearance of the dots.
Saccades were detected online within a window of 10 s (mean
saccade latency was 275 ms, SD = 135 ms) after the onset of
the saccade cue using the algorithm described in this article
(parameters: λ = 10, k = 3, θ = 30°). As soon as a saccade in
the instructed direction was detected, we triggered the presen-
tation of a Gabor patch drifting at saccadic peak velocities. In
stimulus-present trials, the patch occurred intrasaccadically
for 13.9 ms within a radius of 8 dva around the screen center
with 100% contrast, whereas in stimulus-absent trials, the
patch had zero contrast. Stimulus-absent and -present trials
were present in an interleaved manner and were equally prob-
able. Regardless of whether a stimulus was present or absent
in a given trial, the presentation was always accompanied by a
black dot with a size of 4 dva that was displayed (for the same
time as the stimulus) at the location of the photodiode attached
to the lower right corner of the screen. Then, 100 ms after
stimulus offset (i.e., on average, 82 ms after saccade offset),
the saccade target dot would reappear, to give participants
feedback on the accuracy of their saccade and prompt their
response. Participants were instructed to respond with the
right arrow if they had detected a stimulus, and the left arrow
if they had not. They did not receive feedback on their detec-
tion performance but were shown their own saccade trajectory
on the screen whenever they did not reach the saccade-target
area (2-dva radius) or made more than one saccade before
reaching the latter. Trials with these insufficient saccades were
not repeated.

Fixation trials Fixation trials (Fig. 4, right sequence) were
initiated with the display of a small dot (0.4 dva) representing
the center of a fixation area with 2-dva radius. Just like during
saccade trials, gaze had to stay within this area for 450 ms to
initiate the presentation sequence (plus random delay of 50 to
150 ms), until the dot disappeared. Prior to stimulus presenta-
tion, a delay with the duration of the participant’s median
saccade latency (based on the 30 most recent saccade trials)
was added to imitate the saccade trials and to increase

temporal predictability. For the presentation of the rapidly
drifting Gabor patch and the photodiode dot under fixation,
the same parameters were applied as during saccade trials (see
the Stimuli and Saccade Trials sections above). Again, 100 ms
after stimulus offset, a larger dot (0.8 dva) appeared,
prompting the participant’s response (right arrow = “seen,”
left arrow = “not seen”). Participants were instructed to main-
tain fixation until the appearance of the response cue and
received feedback whenever their gaze left the fixation area.

Analysis

We collected a total of 480 trials (240 saccade trials and
240 fixation trials in interleaved and randomized order) per
participant plus one additional set of 305 trials from one
participant owing to an aborted session. Due to insufficient
fixation or early responses, 9.2% of all fixation trials had to
be excluded. In saccade trials, 17.1% were excluded due to
unsuccessful initial fixations, not reaching the target area
with only one saccade or responding before having reached
the target area. Although the Gabor stimuli should be invis-
ible during fixation due to their high drift velocity (Castet &
Masson, 2000; Deubel et al., 1987; García-Pérez & Peli,
2011; Watson et al., 2017), 1% of the remaining saccade
trials were still excluded because the saccade offset preced-
ed the stimulus offset (as measured by the photodiode).
Finally, 0.4% of all trials were removed because of dropped
frames. On average, 222 (SD = 13) of the initial 240 fixa-
tion trials and 201 (SD = 23) of the initial 240 saccade trials
were included for analysis.

Photodiode data and eye movement data were merged
using the EYE-EEG Toolbox (Dimigen et al., 2011) and
downsampled to 1000 Hz. Saccades were detected using
Engbert–Kliegl algorithm (Engbert & Kliegl, 2003; Engbert
& Mergenthaler, 2006) with a threshold of λ = 5 and a min-
imum saccade duration of 16 samples, constituting the
ground truth for the analyses on latency. In addition, mes-
sages on saccades and fixations generated by the EyeLink
system were imported to validate the saccade detection results
from the Engbert–Kliegl algorithm. Unfiltered photodiode
voltage time series data was transformed to standard z-scores
separately for each experimental session, so that the standard
luminance of the screen produced values around 0 and the
reduction in photodiode response due to the brief presentation
of the black dot during stimulus presentation resulted in
values well below – 4. To determine whether the stimulus
was on the screen we thus selected those values below the
cutoff of – 3. In both saccade and fixation trials, we computed
retinal velocity of the stimulus during its presentation by es-
timating eye velocity (using a five-point running mean) from
those gaze samples collected during stimulus presence as de-
termined by the photodiode, and subtracting it from the drift
velocity of the stimulus.
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To analyze the influence of retinal velocity on task perfor-
mance on a trial-by-trial basis, we used a logistic mixed-effect
regression with random intercepts and slopes for observers
(Bates, Mächler, Bolker, & Walker, 2015) to predict correct
responses from retinal velocity (continuous predictor, z-scores
computed separately for fixation and saccade conditions) and
condition (effect-coded; – 0.5 = fixation, + 0.5 = saccade).
Confidence intervals for log odds weights were determined
via parametric bootstrapping with 10,000 repetitions.
Hierarchical model comparisons were performed using the
likelihood ratio test.

We furthermore used t tests to determine whether task per-
formance (d') was different from chance levels and a univar-
iate repeated measures analysis of variance (ANOVA) to com-
pare task performance in the fixation and saccade conditions.

Results

Simulation results

Here we simulated a situation similar to most experimental
paradigms: Once an observer receives a cue to make a sac-
cade, we continuously retrieve data samples from the
eyetracker to determine whether at any point in time the ob-
server has initiated a saccade or not. In this setup, detection
performance has two main aspects, namely accuracy (i.e., de-
tection after saccade onset and not before that) and latency
(i.e., when is a saccade detected relative to the actual saccade
onset, as determined offline). In this simulation, we asked two
main questions: (1) How is the performance of the proposed
algorithm impacted by the choice of parameters, and (2) how
does its performance compare to classic techniques, such as
spatial boundaries and absolute-velocity thresholds, especially
under conditions of additional noise and data loss?

As is shown in Fig. 5a, online saccade detection is a trade-
off between speed and accuracy. At a sampling rate of 500 Hz,
given that only one retrieved data sample is sufficient for
detection, boundary techniques (red squares) have a very high
accuracy [p(FA) = 0.4%, SD = 0.3%; mean d' = 6.3, SD =
0.74] but long saccade detection latencies (M = 15 ms, SD =
1.1 ms), whereas absolute-velocity thresholds (green squares)
have shorter detection latencies (M = 4.4 ms, SD = 0.23 ms),
but with lower accuracy [p(FA) = 11.6%, SD = 3%; mean d' =
4.6, SD = 0.34]. Importantly, the type of eyetracking system
and the sampling frequency of the eyetracker are major mod-
erators of the performance of both techniques. At low sam-
pling rates, samples become less frequently available, whereas
at high sampling rates, sample-to-sample noise impacts the
velocity estimates to a larger extent (Han et al., 2013). For
comparison, at a sampling rate of 1000 Hz, the saccade detec-
tion latencies of both techniques decrease as compared to
500 Hz (boundary: M = 11.2 ms, SD = 0.96 ms; absolute

velocity: M = 1.4 ms, SD = 0.08 ms), whereas false alarm
rates increase drastically for absolute-velocity thresholds
[p(FA) = 63%, SD = 6%; mean d' = 2.8, SD = 0.16].

Even though these traditional online saccade detection
methods are often used on only one data sample, they are
naturally not restricted to this definition. To enable a fair com-
parison to the proposed algorithm that evaluates a number of
samples defined by the user (here, one to four samples), we
tested whether the performance of the traditional techniques
can be improved when more than one sample is taken into
account (Fig. 5). Indeed, for absolute-velocity thresholds ap-
plied to two or more samples, detection accuracy increased
remarkably [500Hz: p(FA) = 2%, SD = 1%;mean d' = 5.5, SD
= 0.5; 1000 Hz: p(FA) = 0.5%, SD = 0.3; mean d' = 5.9, SD =
0.25], but at the cost of an increase in saccade detection laten-
cies (500 Hz:M = 8.6 ms, SD = 1.7 ms; 1000 Hz:M = 4.3 ms;
SD = 0.53 ms). Boundary techniques, on the other hand,
benefited very little from additional test samples [500 Hz:
p(FA) = 0.3%, SD = 0.2%, mean d' = 6.4, SD = 0.7; 1000
Hz: p(FA) = 0.1%, SD = 0.7%, mean d' = 6.2, SD = 0.2], as
their accuracy was already at ceiling for one sample, and their
detection latencies only increased further (500 Hz: M = 18.9
ms, SD = 1.18 ms; 1000 Hz: 13.3 ms, SD = 0.95 ms).

Detection accuracy of the proposed algorithm (shapes in
shades of violet in Figs. 5 and 6) remained largely unaltered
across sampling frequencies [averaged across the entire tested
parameter space, for 500 Hz: mean p(FA) = 11.7%, SD =
2.5%; d' = 5.1, SD = 1.0; 1000 Hz: mean p(FA) = 14.6%,
SD = 3.2%; d' = 5.1, SD = 1.5; β = – 0.01, t(128) = – 0.06,
p = .95], due to the adaptive adjustment of the noise level,
while detection latencies decreased [500Hz:M = 5.5 ms, SD =
2.1 ms; 1000 Hz:M = 3.7 ms, SD = 1.9 ms; β = – 1.5, t(128) =
– 6.1, p < .0001].

Saccade-detection accuracy (Fig. 5b) and latency (Fig. 5c),
however, strongly depended on the choice of the necessary
parameters k, λ, and θ. First, increasing the number of samples
needed above threshold k improved accuracy (d') by 0.48 per
sample [β = 0.48, t(128) = 8.2, p < .0001], but also increased
latency by 1.27 ms per sample [β = 1.27, t(128) = 11.6, p <
.0001]. Note that a similar effect was found above for
absolute-velocity thresholds (see also Fig. 5a). Second, a
higher threshold parameter λ similarly increased both accura-
cy [β = 0.125, t(128) = 10.6, p < .0001] and latency [β = 0.14,
t(128) = 6.3, p < .0001]. Third, accepting a wider range of
saccade directions (in degrees) led to a decrease of accuracy [β
= – 0.004, t(128) = – 5.9, p < .0001] and latency [β = – 0.01,
t(128) = – 6.9, p < .0001]. Although for saccade detection
latencies all three parameters had additive effects (Fig. 5c),
interactions were present for detection accuracy: The benefit
of increasing the number of samples above thresholds k [β = –
0.07, t(128) = – 6.6, p < .0001] or restricting directions θ was
smaller at higher thresholds [β = 0.0004, t(128) = 3.2, p =
.002], because detection accuracy would reach ceiling (Fig.
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5b). Accordingly, direction restriction was more effective at
low λ and low k [β = 0.001, t(128) = 2.1, p = .043].

To improve the understanding of this speed–accuracy
trade-off, we introduced an efficiency score (Townsend &
Ashby, 1978), based on the ratio of correct rejection rate and
detection latency (Fig. 5d). Importantly, it becomes evident
that for optimal parameter choice, the efficiency of the pro-
posed algorithm is well above the efficiency of both the
boundary and absolute-velocity techniques, even when these
techniques evaluated more than one sample. With extremely
conservative settings (see Figs. 5b–5d, rightmost panels),
however, detection latency will be increased to a large degree,
so that some saccades might not be detected in time. With
regard to the optimal choice of parameters, it is important to
consider the noise levels and sampling rate of the eyetracker.
For our simulation, we chose two eyetrackers with similar
spatial precision (RMS = 0.01 dva; SR Research, 2005,
2010), but varying sampling rates. We found that the positive
effects of detection threshold λ and number of samples above
threshold k on detection accuracy were slightly stronger when
tracking at higher than at lower sampling rates [λ: β = 0.047,

t(128) = 1.99, p = .049; k: β = 0.24, t(128) = 2.01, p = .038].
This suggests that a more conservative parameter choice is
more beneficial at higher sampling rates, where increased ve-
locity due to tracker noise is more likely to occur (see also Fig.
6, bottom row).

How do online saccade detection techniques cope with
conditions in which noise is drastically increased or in which
several samples are dropped?We simulated these situations by
adding uncorrelated, Gaussian noise (standard deviations of
up to 6 arcmin) to the data and by randomly removing data
samples (up to 30%). As is shown in Fig. 6 (top row),
absolute-velocity thresholds (green lines) are strongly impact-
ed by noise [β = – 0.75, t(672) = – 6.1, p < .0001], as the false
alarm rate reached almost 100% after adding Gaussian noise
of 1.5 arcmin SD at 1000 Hz, reducing this technique’s effi-
ciency to virtually zero—that is, 0.0005 (SD = 0.0004). As
predicted, at 500 Hz the impact of noise was smaller, but still
an efficiency of virtually zero was reached at a Gaussian noise
SD of 3.0 arcmin (mean efficiency = 0.001, SD = 0.0008). The
detection accuracy of the proposed algorithm (500 Hz: mean
efficiency = 0.11, SD = 0.012; 1000 Hz: mean efficiency =

Fig. 5 Grand averages of detection performance and latency, as
determined by simulation. (a) The trade-off of detection accuracy and
detection latency for each sampling rate. Every dot represents the mean
across all trials, including all eight tested saccade directions, with color
indicating the type of detection method (and threshold factor λ) used and
shape indicating the direction criterion (θ) used. The four connected
values indicate the number of samples above threshold (k) needed for

detection in each condition (always increasing from left to right). (b–d)
Mean detection accuracy, latency, and efficiency, respectively, averaged
across sampling rates for different parameter combinations (λ, θ, k). The
green and red dotted reference lines indicate the average results (across
samples above criteria, k) for the absolute-velocity thresholds and bound-
ary techniques, respectively.
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0.15, SD = 0.021), on the other hand, was largely unimpaired
by noise [λ = 5: β = – 0.03, t(672) = – 0.4, p = .68; λ = 10: β =
– 0.04, t(672) = – 0.6, p = .53; λ = 15: β = – 0.12, t(672) = –
1.7, p = .08]. At a threshold factor of λ = 20, however, detec-
tion accuracy decreased starting at Gaussian noise SDs of 6
arcmin [β = – 0.3, t(672) = – 4.1, p = .0004], since the velocity
thresholds were simply too high: If median-based velocity
SDs such as 26 dva/s (Fig. 6, bottom row, right panel) were
multiplied by a factor of 20, we would achieve unreasonable
velocity thresholds as high as 520 dva/s, and thus miss most
ongoing saccades. Furthermore, in the presence of noise and
when working with lower velocity thresholds, it was benefi-
cial to increase the number of samples that should be evaluat-
ed by the algorithm, to improve accuracy [absolute velocity: β
= 0.69, t(672) = 3.1, p = .002; algorithm [λ = 5]: β = 1.5,
t(672) = 6.6, p < .0001; algorithm [λ = 10]: β = 0.78, t(672) =
3.5, p = .0004].

Because the velocity threshold is estimated on the basis of
the current noise level, to preserve robustness across trials and
participants, higher velocity thresholds due to increased noise
levels should be accompanied by increased detection laten-
cies. Indeed, for every threshold factor λ, the saccade detec-
tion latency of the algorithm increased with noise level [λ = 5:
β = 0.55, t(672) = 19.7, p < .0001; λ = 10: β = 0.85, t(672) =
30.7, p < .0001; λ = 15: β = 1.19, t(672) = 43.1, p < .0001; λ =
20: β = 1.42, t(672) = 51.2, p < .0001]. Naturally, increasing
the number of samples above the criteria needed to detect the
saccade also increased latency across all tested algorithms [β =
1.47, t(672) = 24.5, p < .0001].

With respect to dropped samples, boundary techniques and
absolute-velocity thresholds suffered from longer detection
latencies due to dropped samples [boundary: β = 0.05,
t(672) = 14.8, p < .0001; absolute velocity relative to bound-
ary: β = 0.015, t(672) = 3.0, p = .003], especially when more

Fig. 6 Top three rows: Mean detection accuracy, latency, and efficiency
of the three online saccade detection techniques for different noise levels
(SD of Gaussian noise added to both sample dimensions, x and y) and
sampling rates (left column = 500 Hz, right column = 1000 Hz), averaged
across all levels of percentage of samples dropped. The lines represent
averages across the entire tested parameter space, and symbols represent

the number of samples above threshold needed to detect a saccade (k).
Shaded areas indicate 95% confidence intervals. Bottom row: Median-
based standard deviations of absolute velocity estimates used to compute
velocity thresholds. Different line types represent the percentage of sam-
ples dropped.

1132 Behav Res (2020) 52:1122–1139



samples were evaluated [boundary: β = 0.02, t(672) = 6.7, p <
.0001; absolute velocity relative to boundary: β = 0.007,
t(672) = 0.7, p = .46]. The latency of the proposed algorithm
was less affected by dropped samples than were the two tra-
ditional techniques [λ = 5: β = – 0.03, t(672) = – 6.9, p <
.0001; λ = 10: β = – 0.03, t(672) = – 6.4, p < .0001; λ = 15: β =
– 0.03, t(672) = – 6.4, p < .0001; λ = 20: β = – 0.03, t(672) = –
6.7, p < .0001], a result that is likely related to the interpolation
of missing data samples that the algorithm performs prior to
smoothing and threshold estimation. In fact, median-based
standard deviations depended strongly on the noise level,
but hardly on the percentage of dropped samples in the data
(Fig. 6, bottom row). Although latency increased, all tested
algorithms maintained their accuracy when samples were
dropped [boundary: β = – 0.007, t(672) = – 0.8, p = .44;
absolute velocity: β = 0.005, t(672) = 0.35, p = .73; algorithm
[λ = 5]: β = – 0.01, t(672) = – 1.0, p = .31; algorithm [λ = 10]:
β = – 0.007, t(672) = – 0.49, p = .62; algorithm [λ = 15]: β = –
0.003, t(672) = – 0.24, p = .81; algorithm [λ = 20]: β = –
0.001, t(672) = – 0.01, p = .92].

As is shown in Fig. 6 (third row), efficiency scores
remained constant for the boundary technique [β = –
0.0003, t(672) = 0.001, p = .99] and decreased with
increasing noise levels for all velocity-based algorithms
[absolute velocity: β = – 0.027, t(672) = – 7.6, p <
.0001; algorithm [λ = 5]: β = – 0.017, t(672) = – 4.9,
p < .0001; algorithm [λ = 10]: β = – 0.024, t(672) = –
6.9, p < .0001; algorithm [λ = 15]: β = – 0.022, t(672)
= – 6.5, p < .0001; algorithm [λ = 20]: β = – 0.02,
t(672) = – 5.7, p < .0001], but the least square means
of the computed linear model revealed a considerable
difference between the absolute efficiency of the tested
algorithms: Across sampling rates and for the means of
noise level (i.e., 2.62 arcmin), percentage of dropped
samples (i.e., 15% dropped samples), and number of
samples above threshold (i.e., 2.5 samples), the pro-
posed algorithm outperformed both boundary techniques
(M = 0.065, 95% CI [0.058, 0.071]) and absolute-
velocity thresholds (M = 0.052, 95% CI [0.045,
0.058]) on all threshold factor levels (λ = 5: M =
0.105, 95% CI [0.098, 0.11]; λ = 10: M = 0.14, 95%
CI [0.134, 0.147]; λ = 15: M = 0.14, 95% CI [0.134,
0.147]; λ = 20: M = 0.12, 95% CI [0.117, 0.13]).

Finally, in a separate simulation, we also found that the
algorithm’s running time (i.e., the time elapsed from invoca-
tion to return of the mex function in Matlab 2016b on a Dell
Optiplex 3020 with an Intel i5-4590 processor running
Kubuntu 18.04) on data collected for 2 s was on average
0.051 ms at a sampling rate of 500 Hz (SD = 0.005 ms, N =
30,000), 0.097 ms at 1000 Hz (SD = 0.009 ms, N = 30,000),
and 0.187 ms at 2000 Hz (SD = 0.011 ms, N = 30,000). The
algorithm’s time average complexity is thus linear (and qua-
dratic, in the worst case).

Experimental results

To present an example of application of the algorithm and to
show that its application makes strictly intrasaccadic presen-
tations well possible, we developed an objective and a percep-
tual test. Since our setup allowed for the co-registration of
stimulus events, EEG recordings, and eyetracking at a high
temporal resolution, the objective test used a photodiode to
measure physical stimulus onset and offset during the saccade,
in which the saccade was detected online with the proposed
algorithm (see Fig. 3 for the Apparatus). In addition, as a
perceptual test, we presented a Gabor patch (vertical orienta-
tion, 0.5 cpd spatial frequency, 0.5 dva SD Gaussian aperture)
that—due to its high drift velocity (on average, 420 dva/s)—
would be invisible during fixation but become detectable only
if the eye was moving at a similar velocity in the same direc-
tion (Castet & Masson, 2000; Watson et al., 2017). Observers
were instructed to indicate whether they perceived a Gabor
patch that could be presented anywhere within a range of 8
dva around screen center and was present in 50% of all sac-
cade and fixation trials (Fig. 4).

Online saccade detection in saccade trials worked well.
Only 1% of valid trials had to be excluded due to too early
or too late detection. The mean detection latency amounted to
5 ms (SD = 2.06 ms). Unlike the results from the simulation,
however, this latency estimate still included system delays,
most crucially the end-to-end sample delay of the eyetracker:
According to the manufacturer, the EyeLink 1000+ with nor-
mal filter settings at a sampling rate of 2000 Hz is expected to
have an average delay of 2.7 ms (SD = 0.2 ms; SR Research,
2013). Correcting for these delays, the mean detection latency
would be around 2.3 ms. As a comparison, the mean detection
latency (determined by our simulation) with the same param-
eters and eyetracking system, but tracking at 1000 Hz,
amounted to 3.4 ms (SD = 0.66 ms), while remaining at a high
accuracy level [p(FA) = 0.3%, SD = 0.06%; mean d' = 6.1, SD
= 0.4]. The second crucial latency for gaze-contingent dis-
plays is the flip latency (i.e., the time when the flip occurs
relative to saccade onset; see Fig. 7b), which depends on the
hardware, the display frame rate used, as well as the time
within the refresh cycle. In this experiment, the flip latency
was on average 11 ms (SD = 3.1 ms), as a mean detect-to-flip
delay of 6 ms (SD = 2.46 ms) incurred. Finally, the flip-to-
display latency should be deterministic, as the ProPixx DLP
projector updates its entire display withmicrosecond precision
as soon as all video data are transferred. Indeed, the flip-to-
display latency amounted to an average of 8.15 ms (SD = 0.35
ms), which is in line with the graphic card’s refresh rate of 120
Hz. The addition of all system delays resulted in a phys-
ical stimulus onset around 19.6 ms (SD = 3.1 ms) after
saccade onset (photodiode onset in Fig. 7b), leading to the
intended intrasaccadic display right when the eye was in
midflight (Fig. 7a).
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If the intrasaccadic stimulus presentation was indeed suc-
cessful, then observers should have been able to detect the
rapidly drifting Gabor during saccades and not during fixa-
tion, as only an ongoing eye movement could decrease the
(relative) velocity of the stimulus on the retina to the point
where it would become perceivable. When observers were
fixating, their detection performance was not significantly dif-
ferent from chance level [mean d' = 0.06, SD = 0.14; t(9) =
1.28, p = .23], suggesting that the Gabor stimulus drifting at an
average velocity of 419 dva/s (SD = 61.4 dva/s) was indeed
invisible when the eye was not moving (Fig. 8a). In contrast,
we found that the stimuli were readily detected during sac-
cades, as performance drastically improved relative to the fix-
ation condition [mean d' = 2.94, SD = 1.1; F(1, 9) = 59.6, η2 =
.79, p < .0001].

To further explore the potential effect of retinal velocity on
detection performance, we computed each trial’s mean retinal
velocity during stimulus presentation (see the Analysis sec-
tion). We found that the retinal velocity was on average 416
dva/s (SD = 45 dva/s) during fixation, whereas it was reduced
to 68 dva/s (SD = 68.8 dva/s) during saccades. Note that the
mean retinal velocity during saccades was in most cases pos-
itive, because presentation of the stimulus extended into the
deceleration phase of the saccadic velocity profile (Fig. 7a).

A logistic mixed-effect regression (Bates et al., 2015) re-
vealed not only a large increase of correct responses in the
saccade condition (β = 3.0, t = 5.7, 95% CI [2.13, 4.13]),
but also a significant negative effect of retinal velocity (β =
– 0.12, t = – 2.41, 95% CI [– 0.23, – 0.016]), suggesting that,
across both conditions, higher retinal velocity was associated
with lower task performance. An interaction between

condition and retinal velocity was also significant (β = –
0.20, t = – 2.06, 95% CI [– 0.4, – 0.01]). Because overall
performance was much lower in the fixation condition, this
interaction suggests that the effect of retinal velocity was ex-
clusive to the saccade condition (Fig. 8b). To check whether
the difference between the fixation and saccade conditions
was mediated by a difference in retinal eccentricity at the time
of stimulus presentation, we also computed the mean retinal
position of the stimulus. In the saccade condition, stimuli had
an average 1-dva offset of horizontal eccentricity against the
saccade direction (Mx,sac,left = 1.31 dva, SDx,sac,left = 1.1 dva;
Mx,sac,right = – 1.15 dva, SDx,sac,right = 1.2 dva) relative to the
fixation condition (Mx,fix,left = 0.30 dva, SDx,fix,left = 0.54 dva;
Mx,fix,right = – 0.37 dva, SDx,fix,right = 0.62 dva), which can be
explained by the fact that stimulus presentation extended into
the second half of the saccade in most cases—that is, when the
eye had already passed the screen center (the mean horizontal
presentation location). To determine whether this slight differ-
ence in eccentricity had any effect on task performance, we
added absolute horizontal and vertical eccentricity to the lo-
gistic mixed-effect regression. We found an increase in log-
likelihood that was not significant [ΔLL = + 8.8, χ2(21) =
17.51, p = .68], suggesting that retinal eccentricity played, if
any, a subordinate role in our task.

Discussion

Timing is crucial when studying visual perception around the
time of saccades, especially when manipulating stimulus con-
figurations gaze-contingently with the onset of a saccade. In
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Fig. 7 Timing events in the experimental test. (a) “On” times of the
photodiode (dark blue) of all saccade trials, displayed and sorted accord-
ing to their time relative to the onset and offset of the saccade (dotted
vertical lines). The solid and dashed lines represent the mean horizontal

saccade trajectories of leftward and rightward saccades over time
(smoothed by a univariate general additive model). (b) Distributions of
detection, flip, and photodiode onset times relative to the onset of the
saccade. Shadings indicate data from different observers.



gaze-contingent experimental paradigms, various sources of
latency have to be considered, ranging from eyetracker delays,
saccade detection latencies, graphic card refreshes, video de-
lays, and monitor reaction time. Whereas most of these laten-
cies can be reduced by enhancing hardware capabilities, a
more efficient online saccade detection algorithm improves
timing performance independently of the experimental setup.
Unfortunately, the most commonly used online detection
techniques—that is, the spatial boundary technique and the
absolute-velocity threshold—have significant shortcomings:
The former provides reliable but late saccade detection,
whereas the latter is fast but struggles with reliability, espe-
cially at higher sampling rates or slightly increased noise
levels . Inspired by a widely used algori thm for
(micro)saccade detection (Engbert & Kliegl, 2003; Engbert
&Mergenthaler, 2006), we developed a velocity-based online
saccade detection algorithm that incorporates both algorithms’
strong points: It allows for rapid saccade detection due to low
velocity thresholds, it is robust against noise by applying
smoothing, adaptive adjustment of velocity thresholds, and
an optional direction criterion, and it allows the user to flexi-
bly specify more liberal or more conservative detection
criteria. Across various gaze-contingent experimental para-
digms, as well as in non-scientific applications, this open-

source algorithm could help create comparable and reproduc-
ible results by (1) avoiding timing problems (due to its early
saccade detection) and (2) increasing stability (due to its in-
creased robustness against noise).

We validated the algorithm, as well as the boundary and the
absolute-velocity technique, in a large-scale simulation (>
30,000 saccades). We found that the algorithm provided con-
siderably earlier saccade detection than boundary techniques
(up to 10ms or more, depending on sampling rate), which was
more similar to (although in most cases slightly slower than)
the latency of the absolute-velocity technique. Crucially, the
algorithm’s accuracy in online saccade detection was on par
with the boundary technique and significantly larger than that
of the absolute-velocity technique, especially at high sampling
rates and even when the number of evaluated samples was
accounted for. Moreover, when corrupting the collected data
with noise, absolute-velocity techniques suffered from a dras-
tic increase in false alarms, whereas the proposed algorithm
maintained its detection accuracy by updating its velocity
threshold and exhibited significantly larger efficiency scores
than both traditional techniques. This is an important result
and prerequisite for the use during eyetracking experiments,
because many factors that vary throughout the experiment or
on a trial-by-trial basis, such as pupil diameter, time since last
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Fig. 8 Behavioral results from the perceptual test. (a) Stimulus detection
performance (d') in the fixation and saccade conditions for individual
observers. The large black circles and triangles represent group means
for the fixation and saccade conditions. Error bars indicate 95% confi-
dence intervals, based on ± 2 SEMs. (b)Upper panel:Model fits from the
logistic mixed-effect regression with random intercepts and slopes for

observers. The points indicate mean proportions correct in six equal-
sized bins of retinal velocity (i.e., mean eye velocity during stimulus
presentation subtracted from stimulus velocity) per condition per observ-
er. Lower panel:Distribution of retinal velocities for each observer for the
fixation (right peak) and saccade (left peak) conditions.



calibration, head movements, gaze eccentricity, or marker vis-
ibility, may influence accuracy and precision of recordings
(Nyström, Andersson, Holmqvist, & Van De Weijer, 2013)
and thus alter the noise level. Since the algorithm updates
velocity thresholds with every new incoming data sample,
various negative influences on detection accuracy can be
accounted for. For instance, even small drifts in measured
gaze positions, such as those occurring during fixation when
head-mounted eyetrackers shift their position slightly relative
to the participant’s eyes (which can lead to erroneous saccade
detections when using boundary techniques), would simply
lead to elevated velocity thresholds that preserve detection
accuracy. At the same time, the incentive to achieve high data
quality remains, as increased noise levels may still have a
negative impact on detection latency. The idea of employing
adaptive thresholds for online saccade detection to reduce sus-
ceptibility to noise is not entirely new. For example, in their
PyGaze toolbox, Dalmaijer, Mathôt, and Van der Stigchel
(2014) have used an additional root-mean-square (RMS) cri-
terion along with user-defined thresholds for velocity and ac-
celeration. Unlike that approach, our proposed algorithm de-
pends neither on absolute threshold definitions nor on a cali-
bration of RMS, because thresholds are computed on the basis
of all preceding samples collected during a trial and thus effi-
ciently capture trial-to-trial variance. Moreover, its
nonblocking implementation in the programming language
C allows for flexible, multi-platform usage (e.g., Python,
Matlab, Octave), and yields high speed: Running the algo-
rithm in real time is feasible because a large number of col-
lected samples, such as those collected from eyetrackers sam-
pling at 2000 Hz, can be processed within microseconds.
However, due to its linear time complexity, it cannot be guar-
anteed that the algorithm will finish prior to any given dead-
line. For example, if the algorithm were run on an unneces-
sarily large number of samples, such as 4,000,000, then it
would take ~187 ms (based on the results of our simulation),
exceeding by far the duration of a saccade.

We found that the detection criterion and subsequent per-
formance of the algorithm strongly depends on the parameters
supplied: More conservative settings (i.e., higher threshold
factor, more samples above threshold, a tighter range of ac-
cepted directions) will improve detection accuracy to a max-
imum, but will come at the cost of increased detection latency,
and in the worst case—as is shown by the high-noise
conditions—may lead to abnormally high velocity thresholds
that will make saccade detection impossible. We thus suggest
a careful weighting of parameters depending on the experi-
mental setup and paradigm used. For example, when using a
threshold factor of λ = 5, it makes sense to have at least three
samples above threshold to detect a saccade. Indeed, if the
algorithm were used to detect microsaccades during an exper-
iment, low thresholds should be used, as eye velocities during
microsaccades are not as high as those during saccades,

whereas three or more samples should be evaluated (for a
successful application with a different implementation, see
Yuval-Greenberg, Merriam, & Heeger, 2014). If, however, a
threshold factor of λ = 20 were used, one sample above
threshold might often be enough to reliably detect a saccade
without adding significant additional delay. In pilot work with
the TrackPixx3 (VPixx Technologies, 2017), we also found
that binocular online saccade detection (running the detection
algorithm on each eye separately) allows for lower threshold
factors, as the probability that velocity thresholds are
exceeded simply due to noise in both eyes simultaneously is
smaller than for one eye only. The choice of threshold also
depends on the noise level and sampling rate of the eyetracker
in use, as a higher sampling rate can inflate velocity estimates
(Han et al., 2013). In some systems, such as the EyeLink
1000+ (SR Research, 2013), these two variables are not inde-
pendent: With deactivated heuristic filters, RMS noise
amounts to 0.02 dva at 1000 Hz and to 0.03 dva (monocular
tracking) and 0.04 dva (binocular tracking) at 2000 Hz.
Additional filter levels supplied by the manufacturer can re-
duce these noise levels, but introduce additional end-to-end
sample delay (also depending on sampling rate). It is thus
important to understand that the parameter choice for optimal
online saccade detection performance is intrinsically depen-
dent on both the recording settings and the nature of the task.
For instance, a direction restriction can only be applied in
paradigms, in which it is certain or at least very likely that
the participant will indeedmake a saccade in a given direction.
In case of a two-alternative forced choice paradigm, it would
be possible to call the algorithm twice, each time with differ-
ent direction criteria, but it would be impossible to apply a
direction criterion in a free viewing context. Ultimately, it
remains an advantage that the experimenter is able to fine-
tune the detection criterion according to the relative costs for
longer detection latencies or for an increased false alarm rate
incurring in a specific task.

With the introduction of the objective and perceptual test
experiment, we provided a real-world example of a gaze-
contingent paradigm in which timing was crucial, in this case
for the intrasaccadic presentation to be successful. This test
builds on the finding that rapidly drifting or flickering gratings
that are invisible during fixation can be rendered visible due to
the reduction of retinal velocity occurring when the eye moves
across them (Castet & Masson, 2000; Mathôt, Melmi, &
Castet, 2015; García-Pérez & Peli, 2011). We used a projec-
tion system operating at submillisecond temporal resolution to
briefly display a rapidly drifting Gabor patch entirely during
the saccade, and we asked observers to detect it. We
established that the Gabor patch was indeed largely invisible
during fixation. It was absolutely crucial in this task, therefore,
that the stimulus was presented while the eye was in midflight
to achieve an approximate match of the velocities of stimulus
and eye. Both observers’ high task performance in the saccade
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condition (perceptual test) and recordings from a photodiode
(objective test) confirmed that despite all possible system de-
lays strictly intrasaccadic presentations with a physical onset
as early as 20ms after saccade onset were well possible. At the
same time, only 1% of all trials had to be removed from
analysis because presentations did not happen strictly during
the saccade—for example, due to late detections or erroneous
detections while fixating (see the Method section).
Importantly, the described perceptual test can be a valuable
tool to determine whether a presentation is actually
intrasaccadic when photodiode measurements are unavail-
able: If a drifting stimulus that is otherwise undetectable dur-
ing fixation can be reliably discriminated during a saccade,
then its presentation must be (at least partly) intrasaccadic.
By examining discrimination performance as a function of
time relative to the measured saccade detection, the timing
of a gaze-contingent paradigm can be systematically investi-
gated. Note that although we displayed the drifting Gabor
patch using a projector with a frame rate of 1440 Hz, other
studies have achieved similar presentations using much lower
frame rates, such as 122 Hz (García-Pérez & Peli, 2011),
150 Hz (Mathôt et al., 2015), or 160 Hz (Castet & Masson,
2000), suggesting that the perceptual test should work with
any gamma-calibrated laboratory monitor running at frame
rates of 120 Hz or more.

But the finding is interesting for two other reasons.
First, it shows that if a stimulus has high contrast, is
optimized for the high velocity of saccades (Castet &
Masson, 2000; Deubel et al., 1987; García-Pérez & Peli,
2011; Mathôt et al., 2015; Schweitzer, Watson, Watson,
& Rolfs, 2019), and is not affected by pre- and
postsaccadic masking (Campbell & Wurtz, 1978;
Castet, 2010), then it is readily detectable, if not highly
salient. Second, the finding indicates that timing during
and around saccades matters. It is widely assumed that
visual processing is suppressed during and around the
time of saccades (Burr, Holt, Johnstone, & Ross, 1982;
Burr, Morrone, & Ross, 1994; Ross, Morrone,
Goldberg, & Burr, 2001). This is the reason why many
trans-saccadic paradigms relying on gaze-contingent ma-
nipulations assume that as long as a display change falls
within the window of saccadic suppression—which pre-
cedes saccade onset by up to 100 ms and exceeds the
saccade duration by up to 50 ms (Diamond, Ross, &
Morrone, 2000; Volkmann, 1986; Volkmann, Riggs,
White, & Moore, 1978)—it is neither noticed nor proc-
essed. There is, however, converging evidence that stim-
uli undergoing saccadic suppression can shape
postsaccadic perception (Watson & Krekelberg, 2009),
and that the relative timing of a stimulus relative to
saccade offset drastically changes both the appearance
of that stimulus and its likelihood of being consciously
perceived (Balsdon, Schweitzer, Watson, & Rolfs, 2018;

Bedell & Yang, 2001; Campbell & Wurtz, 1978; Duyck,
Collins, & Wexler, 2016; Matin, Clymer, & Matin,
1972). There is also evidence that brief intrasaccadic
flashes were able to drive saccadic adaptation when
presented during the deceleration phase of an ongoing
saccade (Panouillères et al., 2016). Although for many
experiments and the conclusions drawn from them intra-
saccadic display changes may not be absolutely crucial,
it is important to be aware of the possibility that an
intended intrasaccadic change might in fact be a
nonintended postsaccadic change due to insufficient
control of timing or hidden latencies in the hardware.
Earlier saccade detection can alleviate this risk.

We conclude that implementing efficient gaze-contingent
display changes across saccades can be tricky, owing to a
rangeof system latencies that have an impact on a paradigm’s
timing behavior.We as experimenters need to examine these
latencies closely in order to draw the right conclusions from
our results. Early online saccade detection can assist greatly
in this task, as it saves valuable time for the setup to perform
the intended (trans-saccadic) changes, but it comes at the cost
of reduced online saccade detection accuracy—especially at
higher noise levels—making it ultimatelyharder to smoothly
collect data. The algorithm proposed here outperforms tradi-
tional detection methods in speed and accuracy, while
adjusting detection thresholds in response to increased noise
levels. These properties make it a reliable tool even when
collecting data under suboptimal recording circumstances,
as well as computationally feasible to use for the online sce-
nario, due to its near real-time processing and linear com-
plexity. Finally, the open-source availability of the code
leaves it open for researchers to use and adapt the algorithm
to their specific needs, making it a versatile tool for the field
of active vision.
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