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Abstract

Plasticity in the oculomotor system ensures that saccadic eye movements reliably meet

their visual goals—to bring regions of interest into foveal, high-acuity vision. Here, we pres-

ent a comprehensive description of sensorimotor learning in saccades. We induced continu-

ous adaptation of saccade amplitudes using a double-step paradigm, in which participants

saccade to a peripheral target stimulus, which then undergoes a surreptitious, intra-sac-

cadic shift (ISS) as the eyes are in flight. In our experiments, the ISS followed a systematic

variation, increasing or decreasing from one saccade to the next as a sinusoidal function of

the trial number. Over a large range of frequencies, we confirm that adaptation gain shows

(1) a periodic response, reflecting the frequency of the ISS with a delay of a number of trials,

and (2) a simultaneous drift towards lower saccade gains. We then show that state-space-

based linear time-invariant systems (LTIS) represent suitable generative models for this

evolution of saccade gain over time. This state-equation algorithm computes the prediction

of an internal (or hidden state-) variable by learning from recent feedback errors, and it can

be compared to experimentally observed adaptation gain. The algorithm also includes a for-

getting rate that quantifies per-trial leaks in the adaptation gain, as well as a systematic,

non-error-based bias. Finally, we study how the parameters of the generative models

depend on features of the ISS. Driven by a sinusoidal disturbance, the state-equation admits

an exact analytical solution that expresses the parameters of the phenomenological descrip-

tion as functions of those of the generative model. Together with statistical model selection

criteria, we use these correspondences to characterize and refine the structure of compati-

ble state-equation models. We discuss the relation of these findings to established results

and suggest that they may guide further design of experimental research across domains of

sensorimotor adaptation.

Author summary

Constant adjustments of saccade metrics maintain oculomotor accuracy under changing

environments. This error-driven learning can be induced experimentally by manipulating
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Editor: Wolfgang Einhäuser, Technische Universitat

Chemnitz, GERMANY

Received: December 1, 2018

Accepted: June 19, 2019

Published: August 9, 2019

Copyright: © 2019 Cassanello et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The recorded

datasets are publicly available at https://osf.io/

r7xum, and can be cited under DOI 10.17605/OSF.

IO/R7XUM.

Funding: This work was supported by Deutsche

Forschungsgemeinschaft (DFG) grants to MR (RO

3579/2-1, RO 3579/3-1, and RO 3579/8-1). The

funders had no role in study design, data collection

and analysis, decision to publish, or preparation of

the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

http://orcid.org/0000-0003-1591-8802
http://orcid.org/0000-0002-8214-8556
https://doi.org/10.1371/journal.pcbi.1006695
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006695&domain=pdf&date_stamp=2019-08-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006695&domain=pdf&date_stamp=2019-08-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006695&domain=pdf&date_stamp=2019-08-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006695&domain=pdf&date_stamp=2019-08-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006695&domain=pdf&date_stamp=2019-08-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006695&domain=pdf&date_stamp=2019-08-21
https://doi.org/10.1371/journal.pcbi.1006695
http://creativecommons.org/licenses/by/4.0/
https://osf.io/r7xum
https://osf.io/r7xum
https://doi.org/10.17605/OSF.IO/R7XUM
https://doi.org/10.17605/OSF.IO/R7XUM


the targeting error of eye movements. Here, we investigate oculomotor learning in healthy

participants in response to a sinusoidally evolving error. We then fit a class of generative

models to the observed dynamics of oculomotor adaptation under this new learning

regime. Formal model comparison suggests a richer model parameterization for such a

sinusoidal error variation than proposed so far in the context of classical, step-like distur-

bances. We identify and fit the parameters of a generative model as underlying those of a

phenomenological description of adaptation dynamics and provide an explicit link of

this generative model to more established state equations for motor learning. The joint

use of the sinusoidal adaption regime and consecutive model fit may provide a powerful

approach to assess interindividual differences in adaptation across healthy individuals and

to evaluate changes in learning dynamics in altered brain states, such as sustained by inju-

ries, diseases, or aging.

Introduction

The accuracy of saccadic eye movement is maintained through mechanisms of saccade adapta-

tion, which adjust the amplitude [1–3] or direction [4–6] of subsequent movements in

response to targeting errors. As online visual feedback cannot be used to correct the ongoing

movement, saccadic eye movements need to be preprogrammed and adaptation must largely

rely on past experience and active predictions [7,8] rather than closed-loop sensory

information.

To induce saccade adaptation in the laboratory [1], participants are instructed to follow a

step of a target stimulus with their eyes and this visual cue is then displaced further during

the saccade eye movement. Typically, this second, intra-saccadic step (ISS) is constant across

trials and directed along the initial target vector towards smaller or larger saccade amplitudes.

Although the ISS is visually imperceptible [9], saccades adjust their amplitude to compensate

for the induced error. In phenomenological analyses of such saccade adaptation data, the

amount of adaptation is usually quantified by comparing saccade gain values before and after

the adapting block and interpolating an exponential fit in between [1–3,10].

We recently presented a version of this paradigm in which the ISS (the disturbance respon-

sible for inducing adaptation) follows a sinusoidal variation as a function of trial number

([11,12]; see also [4,13,14]). We reported that gain changes were well described by a parametric

functional form consisting of two additive components. One component was a periodic
response reflecting the frequency of the ISS that was adequately fitted with a lagged but other-

wise undistorted sinusoid. The second component constituted a drift of the baseline toward

lower saccade gain (larger hypometria) that was appropriately accounted for using an expo-

nential dependence.

Here, we investigate whether a generative algorithm that models saccade gain modifications

on a trial-by-trial basis by learning from errors made on previous trials can account for this

response. To this end, we implemented and fit a series of state-space models in which a modi-

fied delta-rule algorithm updates a hidden or latent variable (for which the experimentally

observed adaptation gain is a proxy) by weighting the last experienced visual error, in addition

to other error-based and non-error based learning components [8,15–23].

We adopt the approach that these algorithms are linear time-invariant systems (LTIS), in

that their coefficients are time and trial-independent. LTIS models, also known as linear

dynamical systems (LDS) have been successfully used in a number of motor adaptation studies

[8,19–22,24–27]. Applied to saccade adaptation, they may predict the dynamics of the saccade

Generative learning model for saccade adaptation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006695 August 9, 2019 2 / 35

https://doi.org/10.1371/journal.pcbi.1006695


amplitude itself as well as various forms of movement gain typically used in describing adapta-

tion [2,3,10,11]. Our first goal was to establish empirically whether LTIS models could fit the

data recorded with a sinusoidal adaptation paradigm, as efficiently as when using a constant

(fixed) ISS. Once we have established this point, we will explore the relation between the pre-

dicted phenomenological parameters [11,12] and the learning parameters of the underlying

generative model, as well as their potential dependence on the perturbation dynamics.

We first analyze the ability of a family of generative models to describe experimental

recordings of saccade adaptation by fitting the relevant learning parameters. We then perform

statistical model-selection analysis to determine those that best fitted the same data in the vari-

ous experimental conditions. We fitted models to two data sets, a previously published one

[11] and a variation of that paradigm that extended the range of frequencies of the sinusoidal

variation of the ISS. Both data sets contrasted two established saccadic adaptation protocols

[11,12]: Two-way adaptation (i.e., bidirectional adaptation along the saccade vector of saccades

executed along the horizontal meridian) and Global adaptation (i.e., adaptation along the sac-

cade vector of saccades executed in random directions). We then explore consequences for

current models of motor learning and suggest possible modifications that may be required to

generate a suitable description of sensorimotor learning during sinusoidal saccadic adaptation.

In conducting this selection, we confirm that a single learning parameter model (a state-equa-

tion with just an error-based learning term; cf. [19]) does not suffice to fit the data. We then

demonstrate that including an extra term that weights the next-to-last trial’s error provides a

better fit for the Two-way type of adaptation. This learning rate has the intriguing feature that

it has negative values for all frequencies, suggesting an active unlearning of the next-to-last tri-

al’s feedback error, close, but not equal in magnitude to the learning rate of the last trial’s

error. We discuss possible functional roles of these processes for oculomotor adaptation in nat-

ural situations, where saccadic accuracy is expected to exhibit slow dynamic changes across

time.

Methods

Ethics statement

The Ethics Committee of the German Society for Psychology (DGPs) approved our protocols.

We obtained written informed consent from all participants prior to the inclusion in the

study. The present study conformed to the Declaration of Helsinki (2008).

Procedure

We re-analyzed the data we recently collected using a fast-paced saccade adaptation paradigm

with a sinusoidal disturbance. We had previously described these data by fitting a phenomeno-

logical model that we identified using statistical model selection. For details on the experimen-

tal procedures pertaining to this original data set (henceforth, ORIG) and to the selection of

the functional form of this phenomenological model, please refer to our former communica-

tion [11].

We applied the same experimental procedure in collecting further data with an enhanced

range of frequencies. In this case, thirteen participants ran two sessions with similar Two-way

and Global adaptation protocols as used in previous reports [11,12]. In short, Two-way adapta-

tion refers to bidirectional adaptation along the saccade vector of saccades executed along the

horizontal meridian. In turn, Global adaptation refers to adaptation along the saccade vector

of saccades executed in random directions.

In collecting this dataset (henceforth, FREQ), each session had 2370 trials divided in 11

blocks. Odd numbered blocks had 75 no-adaptation trials (zero ISS). The five even-numbered
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blocks consisted of 384 trials each with a sinusoidal disturbance similar to that used before but

with frequencies of 1, 3, 6, 12 and 24 cycles per block (i.e., 384, 128, 64, 32, and 16 saccades per

cycle, respectively). The order of adaptation blocks was randomly interleaved for each observer

and type of adaptation. The program was paused after each adaptation block, giving partici-

pants some resting time, and we calibrated eye position routinely at the beginning of each

non-adapting (odd-numbered) block. In each trial, the pre-saccadic target step was fixed at 8

degrees of visual angle (dva). The subsequent second step (ISS) then ranged between –25%

and +25% of the first step, changing size according to a sine function of trial number.

Data analysis and phenomenological model

Modeling of the saccadic response. In a double-step adaptation paradigm [1], after a fixa-

tion interval the fixation target FP(n) undergoes a first step to become the target of a saccade,

displayed at the pre-saccadic location TP1(n). Because the eyes might have been stationed at a

location EP1(n) close to but different than FP(n), we define the pre-saccadic target amplitude

preTP(n) = TP1(n) − EP1(n), with origin at EP1(n) rather than FP(n) and keep this convention

throughout the study.

The second step of the McLaughlin paradigm (i.e., the target displacement inducing a feed-

back error) then shifts the target during the saccade to a position TP2(n) (so that ISS(n) = TP2

(n) − TP1(n)). Therefore, the post-saccadic target amplitude (at or immediately after saccade

landing) is given by the identity: postTP(n) = preTP(n) + ISS(n). For convenience, we will

define a target gain, t(n), as the ratio of the post-saccadic target amplitude to the pre-saccadic

one, as well as a disturbance gain, d(n), as the ratio of the second to the first target steps, i.e.,

the ratio of the ISS to the saccade proxy:

t nð Þ ¼
postTPðnÞ
preTPðnÞ

¼ 1þ
ISSðnÞ

preTPðnÞ
¼ 1þ d nð Þ:

In the general case, there would be a constant and a variable component in the second tar-

get step, ISS(n) = C + V(n). In our sinusoidal adaptation paradigms, C = 0 and V nð Þ ¼
P sin 2pf

N n
� �

is a sine function of the trial number so that:

t nð Þ ¼ 1 þ
ISSðnÞ

preTPðnÞ
¼ 1þ cþ v nð Þ ¼ 1þ p nð Þ � sin

2pf
N

n
� �

; ð1Þ

where c and v(n) are the ratios of the constant and variable part of the ISS to the pre-saccadic

target amplitude. In the sinusoidal paradigms, f is the frequency of the sinusoid in cycles per

block, N is the number of trials in an adaptation block, and n is the index of the current trial.

At fixed amplitude, the dynamics of the disturbance is fully determined by its angular fre-

quency o ¼
2pf
N , that characterizes the rate of change of the sinusoid in each trial. P is the max-

imum absolute magnitude of the variable part V(n), i.e., the ‘amplitude’ of the sinusoid that

defines the ISS. It was fixed at 2 dva throughout all sinusoidal adaptation datasets. Therefore,

ISS(n) changed in magnitude periodically and in a sinusoidal fashion between approximately

–25% and +25% of the magnitude of the pre-saccadic target eccentricity (preTP(n)), which

was held approximately fixed at 8 dva in all datasets. Finally, p(n) is the ratio of P and preTP
(n), and had an approximately constant value of 0.25 across the sinusoidal datasets (the slight

dependence on the trial number was a consequence of the slight dependence of the normaliz-

ing factor preTP(n) on the trial number; in actuality, the magnitude held constant at 8 dva

across the experiment was TP1(n) − FP(n), which differed slightly but not systematically

from TP1(n) − EP1(n)). Given that we used integer number of cycles across all sinusoidal
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adaptation experiments, we expressed the frequency in cycles per block (cpb). We set the ini-

tial phase to zero, which means that the magnitude of the ISS starts at zero in the direction of

positive ISS (outward second-steps of the saccade target) first. Eq 1 provides a complete

description of the stimulus that we used. Yet, for the analyses pursued here and to make closer

contact with our phenomenological characterization of oculomotor responses in sinusoidal

adaptation [11], we will further define a stimulus gain, s(n), to be the disturbance gain normal-

ized to (i.e., divided by) its maximum absolute value. Therefore, s(n) would range within ±1

in units of its maximum amplitude following a sinusoidal variation with trial number:

s nð Þ ¼
preTPðnÞ
k ISSk

�
�
�
�

�
�
�
�

postTPðnÞ
preTPðnÞ

� 1

� �

¼
ISSðnÞ
k ISSk

¼
1

kdk
d nð Þ ¼ sin

2pf
N

n
� �

: ð2Þ

Saccade amplitude adaptation is usually described in terms of the changes in saccade gain
(SG(n)), defined as the ratio of the saccade amplitude (SA(n)) to the pre-saccadic position

error (preTP(n)). During non-adapting trials and at the beginning of the adaptation blocks, SG
(n) is typically slightly smaller than 1, which means that the saccade undershoots the target.

Since we are interested in keeping track of the excursions of the saccade gain with respect to a

perfect completion of the saccade that matches preTP(n) exactly, we shall define an adaptation
gain subtracting one from the usual saccade gain and normalized to the maximum absolute

value of the ISS,

g nð Þ ¼
preTPðnÞ
k ISSk

SGðnÞ � 1ð Þ ¼
SAðnÞ � preTPðnÞ

k ISSk
: ð3Þ

The adaptation gain represents the residual of the saccade gain with respect to perfect land-

ing. When a saccade lands exactly on the first target step (a perfectly accurate saccade), the sac-

cade gain will be one while the adaptation gain will be zero. Therefore, the adaptation gain

uses perfect landing as the origin of coordinates and quantifies departures from this ideal goal

state. Clearly, in both descriptions the reference represents a state of no adaptation. The adap-

tation gain description may be viewed as following the evolution of the error rather than that

of the full eye movement. As long as the true underlying learning model is strictly linear, both

descriptions must be equivalent since they relate to each other by a shift. We used the adapta-

tion gain, g(n), in our previous reports [11,12] to provide phenomenological parametric

description of sinusoidal adaptation data and it is also commonly used within motor control

research. Throughout the manuscript we shall use SG(n) or g(n) as the relevant behavioral vari-

ables describing the data, which are computed directly from the experimental measurements

of the eye and target positions in each trial.

Assessment of the evidence in favor of a model. In implementing the phenomenological

parameter estimation, we adopted a Gaussian likelihood for the data given the model. This

likelihood can be maximized with respect to the parameters at a fixed but unknown width.

Instead we adopted the following procedure [11,13]. Using Bayes theorem, priors for the

parameters to be estimated, and assuming a constant prior probability for the data, we can

obtain a joint probability amplitude for all parameters that can be marginalized to extract indi-

vidual probability amplitudes for each parameter. In this process, the width of the Gaussian

likelihood is a nuisance parameter that we integrate out using a non-informative prior

[13,28,29]. Once such integration is conducted, the volume of the resulting probability density

(given the data) provides an estimate of the odds that the model would provide a reasonable

description of the data. Here we provide a full model consisting of six parameters (sinusoidal

entraining of the oculomotor response riding over a baseline drift) that we want to compare to

Generative learning model for saccade adaptation
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a partial model (the drift of the baseline alone) and to a minimal model consisting of the mean

of the adapting block with variance equal to the variance of the recorded data over that block.

To establish which situation is more likely across different number of parameters, we take the

log of the ratio of the odds across the models. The resulting magnitude is the evidence that the

data are in favor of a particular model and is measured in decibels (db). When this magnitude

is positive, the odds favor the model in the numerator, with evidence higher than 3 db indicat-

ing that this model is significantly favored to the one in the denominator. We use this metric

to assess the quality of our parameter estimation.

Statistics. Throughout the manuscript we report results as mean ± SD for individual data

and mean ± SEM when we discuss group data. In the phenomenological fittings, to determine

average parameters from the parameter estimation other than the frequency, we computed the

mean and variance for each parameter and participant as the first two moments of the corre-

sponding posterior probability distribution and took the average of the means weighted by

their standard deviations (square root of the estimated variance) to generate each point on the

population plot. Alternative estimators (e.g., the modes of the posterior distributions, with and

without weighting) gave qualitatively similar results.

Modeling of the sensorimotor learning process: The modified delta-rule

state equation

To investigate generative models, we adopt the following rationale. In each trial, the oculomo-

tor system must generate a motor command to produce the impending saccade. This needs to

be calibrated against the actual physical size of the required movement [15,20,22,24,30,31].

If the saccade fails to land on target, the motor command needs to be recalibrated based on

preexisting calibrations, and we will hypothesize that those changes take place in an obligatory

manner (cf. [19]) through additive, error-based modifications attempting to ameliorate post-

saccadic mismatches between the eyes’ landing position and target location.

We model the underlying sensorimotor learning using linear time-invariant systems

(LTIS). The model parameters (or the learning coefficients) are time independent in each

experimental block, although they can vary across experimental conditions or phases [32].

These models are closely related to linear dynamical systems (LDS; cf. [20–22]), except that

here we only address noise-free models.

Because saccades are extremely rapid movements that do not admit reprogramming in

mid-flight, it is assumed that all gain changes take place in between saccades. In our models,

therefore, the error-based correction terms weight errors that were experienced in previous

saccades. As a consequence, in the estimation of the forthcoming event, the post-saccadic stim-

ulus gain is not compared against the adaptation gain measured for that trial but against the

previous estimate of the gain. To justify these assumptions, it is usually assumed that the

motor system sends an efference copy of the motor command to the sensory areas, which

enables prediction of the sensory consequences of the movement and therefore avails compari-

son to experienced post-saccadic feedback [7,19,20,31,33–35].

We will assume that the values of saccade and adaptation gains observed and extracted

from the recorded data (i.e., SG nð Þ ¼ SAðnÞ
preTPðnÞ and g nð Þ ¼ SAðnÞ� preTPðnÞ

kISSk ) are adequate proxies of

that motor calibration process. Yet the calibration itself is an internal feature of the brain and

therefore the adaptation gain that enters the generative algorithm (the state-equation) that we

intend to study is a hidden variable representing the internal state of the system. A model pro-

viding its temporal evolution can then be fitted to the data; yet the variable itself is not experi-

mentally accessible. We denote the internal variable associated to the saccade gain by z(n). To

Generative learning model for saccade adaptation
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describe the evolution of this state variable we introduce the state-equation:

zðnþ 1Þ ¼ A � zðnÞ þ K � ðtðnÞ � zðnÞÞ þM þ D � ðtðn � 1Þ � zðn � 1ÞÞ; ð4Þ

supplemented with an initial condition that sets the initial value z(1) = G � t(1). Here, the target

gain t(n) is available from recordings in each trial and we shall assess how well the prediction of

the saccade gain (z(n + 1), provided by Eq 4) fits the recorded data SG(n). The first term on the

RHS of the equation is a persistence term. The persistence rate A determines how much of the

estimate of the state variable at trial n is transferred to the estimate at the next trial [8,25,36].

Therefore, its magnitude is expected to be typically slightly smaller than 1 and it is set to be 1

in the models that do not include its effect. The second term weights the discrepancy between

the gain of the target at trial n and the predicted gain of the movement under the underlying

assumption that the size of the state variable is an adequate proxy for the (sensory) conse-

quences of the movement. The weighting coefficient K is called learning rate. M embodies any

systematic effect (drift or bias) that takes place in each trial but it is not directly determined by

the sensory feedback [37]; we shall call it a drift parameter. The last term is a second error-

based correction term that weights the discrepancy between the gain of the target and the esti-

mate of the movement at a trial other than the last error with an additional (distal) learning

rate D. For concreteness we shall assume that this correction is based on the sensory feedback

arising from the next-to-last trial. However, we shall return to this specific assumption further

in the Discussion. Note that with the inclusion of this hypothetical double error sampling the

full model of Eq 4 (and Eq 5 below) becomes an algorithm that coherently uses two delayed

feedbacks to estimate the state of a single internal variable that models the sensory conse-

quences of the intended motion.

Formatting of the data for fittings of the learning model. To be able to consistently

compare results from this manuscript with the phenomenological analyses of the data

presented in our earlier report, we will write the generative model in terms of a state variable

associated to the adaptation gain of Eq 3 (cf. [11], and therefore naturally defined as

x nð Þ ¼ 1

p zðnÞ � 1ð Þ. Applying these changes, we obtain:

xðn þ 1Þ ¼ A � xðnÞ þ K � ðsðnÞ � xðnÞÞ þmþ D � ðsðn � 1Þ � xðn � 1ÞÞ: ð5Þ

As suggested by Eqs 4 and 5, a sensorimotor learning model can be written in terms of hid-

den variables that would be naturally associated with the saccade gain or the adaptation gain

defined in Eqs 2 and 3 respectively. When transitioning from the saccade gain to the adapta-

tion gain description in this linear model, the only parameter of Eq 4 susceptible to changes is

M, which we indicated in Eq 5 using the lower-case m instead. Throughout the manuscript we

adopt the adaptation gain (defined above) as the state variable to characterize the internal

model and Eq 5 as its relevant state-equation. In this description, the stimulus gain reduces to

a pure sinusoidal disturbance with zero mean (i.e., with no static component), which mini-

mizes confounds between the effects of the retention rate A and the drift parameter m.

Because movement gains are computed from experimental observations, models of motor

control often include a second equation that maps the estimates of the hypothesized internal

variable to real-world observations (see, e.g., [20,21]). In our simplified analyses and again

invoking the pre-programmed nature and accuracy of saccades, we set this second (observa-

tion) stage to be an identity.
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Estimation of the learning parameters, model classification and model

selection

We conducted our analyses using the full form of Eq 5. We were interested in determining

which model suffices to account for the data with the least number of parameters. The magni-

tude being learned is x, the internal representation of the adaptation gain of the imminent sac-

cade. This gain has value zero upon the ideal outcome of perfect movement accuracy and in

that respect, it can be interpreted as the gain of an internal prediction error. Using Eq 5, we

generated the predicted values of x(n) in each condition and for each participant, and then fit-

ted a number of models that differed from each other in which parameters were estimated.

When a parameter among K, m, or D was not present, the corresponding term was removed

from Eq 5. Note however, that when the parameter A was not included as a fitting parameter,

its value was set to unity (i.e., A = 1). In the case of the initial value G, we obtained an estimate

by taking the average of the first five values of the gain. We proceeded in this way because the

initial value of the state of the system is unknown and, while the first recorded value of the

gain could be considered a proxy for such initial state, execution and motor errors could yield

a value of the gain significantly different than the actual initial state of the system; we averaged

over 5 trials to alleviate this problem. In models where the initial value of the gain was left free

to become a fitting parameter, this average over the first five saccades was used as an initial

value for the fitting routine for that particular parameter. Improvements can be achieved by

letting the initial condition become an extra parameter. We discuss below the interpretation of

using the initial condition as a fitting parameter of the model.

In view of these features of the generative model, a natural classification of the models

tested arises as follows: given the parameters K, A, m, D1,� � �, Dw, G, we will 1) include K in

every model because we are modeling intrinsic learning where we assume that learning from

the last experienced feedback is always present as well as obligatory [19,20,22,31]; 2) models

will be generated by adding successively the parameters A, m, and D, of which one or more

could be present but in this study we restrict ourselves to learning possibly from only one extra

feedback in the past; 3) G is an optional parameter that is included in an attempt to alleviate

extreme effects of the initial condition(s) as explained above. By applying points 1) through 3),

sixteen different models can be generated. For reasons to become clear below we would group

them in four families according to whether or not they contain the bias term (m) and the addi-

tional error term (with learning rate D): K only (although with A = 1 when omitted), KA, KG,

KAG feature zero bias and a single error term; Km, KAm, KmG, KAmG are models with a sin-

gle error term that allow bias; KD, KAD, KDG, KADG have no bias term but sample two errors,

and KmD, KAmD, KmDG, KAmDG feature both a bias term and learn based on double error

sampling. Therefore, the simplest model had a single fitting parameter (the learning rate K, cf.

[19]) and was obtained by setting A = 1, removing the terms that involved m and D, and setting

the initial value G to be the mean of the first five values of the gain in the block. The full model

had all five as fitting parameters.

All parameters of the generative models were estimated by fitting the model to the experi-

mental data using MATLAB function nlinfit; 95% confidence intervals for the fitted parame-

ters were computed using MATLAB function nlparci and predicted responses for the hidden

variable x with its corresponding 95% confidence intervals were obtained from MATLAB

function nlpredci.

All 16 models were fitted to data from each individual participant parameters were

extracted for each model, and models were compared using the Akaike information criterion

(AIC; [38–41]) by computing Akaike weights across models for each participant. Finally, these

weights were averaged across participants for each model in each condition.
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Using the generative model to predict the parameters of the

phenomenological description of the adaptation gain

The adaptation gain of the oculomotor response to a sinusoidal disturbance is best described

by a phenomenological function consisting of a decaying exponential added to a lagged but

otherwise undistorted sinusoid [11]. The sinusoidal component of the response onsets at the

beginning of the adaptation block but all fittings include the pre-adaptation block as well. The

frequency of the stimulus disturbance is matched closely by the gain. To fully describe the

response, five extra phenomenological parameters are required: amplitude (a) and lag (ϕ) of

the periodic part of the error gain complete the description of the periodic part. The exponen-

tial decaying component that describes the baseline on which the periodic response rides

requires other three: an asymptotic value (B0) where the baseline stabilizes at large trial num-

ber, a timescale (λ) in which the baseline reaches 1/e of the full decay, and the amplitude of the

decay (B):

g nð Þ ¼ a � sin ðon � �Þ þ Be� ln þ B0; with o ¼
2pn

N
: ð6Þ

We use here the same denominations used in our previous report [11], except for changing

the name of the timescale to λ to prevent confusion with the amplitude of the periodic compo-

nent a. To estimate parameters of the phenomenological functional form that best fits the data

we used the same general procedure and parameter estimation algorithm implemented in our

earlier contributions [11,13]. Solving the state-equation via iteration in the simpler case where

the system learns only from the last experienced feedback (cf. S1 Appendix), or borrowing

techniques from the theory of LTIS reveals a correspondence between these phenomenological

parameters and the coefficients of the generative model of Eq 5. (A complete derivation of the

phenomenological parameters as functions of the generative ones is not presented here due to

space limitations; details about the analytical procedures adopted can be found in [42]).

Depending on the parameters that each generative model includes, the functional form and

value of the phenomenological coefficients may change. Here we are interested in assessing

which theoretical prediction of the relation among phenomenological and generative model

parameters matches the data best as a way to validate the underlying sensorimotor learning

algorithm.

Lag and amplitude of the periodic response

The lag of the periodic response of the error gain derived from the (full version of the) genera-

tive model of Eq 5 including the next-to-last feedback-error term is given by:

cos �ð Þ ¼
coso � ðA � K � D cosoÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½coso � ðA � K � D cosoÞ�2 þ ½ð1 � DÞ sino�2
q

sin ð�Þ ¼
ð1 � DÞ sino

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½coso � ðA � K � D cosoÞ�2 þ ½ð1 � DÞ sino�2
q

: ð7Þ

In models without next-to-last feedback term D should be set to zero; in models that do not

have A as a fitting parameter, its value should be set to 1 in Eq 7.
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The periodic component of the response to a sinusoidal disturbance in models where the

next-to-last feedback is included can be written as:

h nð Þ ¼
K
R

sin ðon � �Þ þ
D
R

sin ðoðn � 1Þ � �Þ; ð8Þ

where R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½coso � ðA � K � D cosoÞ�2 þ ½ð1 � DÞ sino�2
q

.

Eq 8 shows that if D = 0 we recover the solution expected by iteration when there is learning

from the last error only. Then the amplitude of the periodic component (a) in Eq 6 can be read

out directly to be a ¼ K
R. When D 6¼ 0 we need to re-write Eq 8 so that it matches the periodic

part of Eq 6. After some algebra Eq 8 can be recast as:

h nð Þ ¼
Q
R
� sin ðon � ð�þ φÞÞ ð9Þ

where

Q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðK þ D cosoÞ2 þ ðD sinoÞ2
q

; cos φ ¼
K þ D coso

Q
; sin φ ¼

D sino
Q

: ð10Þ

Eqs 7 to 10 clarify the effect of the presence of the next-to-last error learning rate D. Eq 7

shows how the bare lag ϕ changes when D is present. Yet, it would be incorrect to compare the

fitted values of the phenomenological lag to Eq 7. The reason is that the second contribution in

Eq 8 modifies not only the amplitude of the periodic component to the new value a ¼ Q
R, but it

also adds the shift φ to the lag. Therefore, if there were also learning from the next-to-last

error, the observed (behavioral) lag should be compared to ϕ + φ.

Baseline drift parameters

Following a sinusoidal disturbance, the baseline of the error gain will approach an asymptote

at large trial number that can be written as a function of parameters of Eq 5 as (see also

S1 Appendix):

B0 ¼
m

1 � ðA � ðK þ DÞÞ
ð11Þ

The timescale λ for the decay of the baseline, has units of 1/trials and it is defined by:

e� l ¼
1

2
A � Kð Þ � ½ðA � KÞ2 � 4D�

1
2

n o
ð12Þ

Eq 12 provides the weights of the impulse response that generates the integral solution by

convolving the stimulus (i.e., s(n); cf. S1 Appendix, [42]). The inverse of the timescale parame-

ter λ gives the number of trials over which the stimulus is integrated. Beyond this window of
integration, the weighting of the stimulus would have reduced enough to ignore further contri-

butions. When D = 0, the integration weight becomes e−λ = (A − K), which is positive and

smaller than 1, provided that the learning rate K< 1 and A ~ 1. When D 6¼ 0, Eq 12 provides

timescales for two modes that compose the integral solution of the state-equation. These result

from the addition or subtraction of the second term in braces. If the parameter D is negative,

the second term inside the braces becomes slightly larger than the first. The timescale resulting

from the addition is positive and can be expressed as a decaying exponential. The subtraction

solution is negative and of small magnitude and, therefore, it will decay much faster when

raised to the trial number. It introduces small additive fluctuations to the exponential decay of

the addition solution without changing its overall behavior. Critically, diverse sizes of the
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learning parameters may result in smaller or larger timescales in models with D 6¼ 0 compared

to models where D = 0 (cf. Results section and S1 Appendix).

To recap, Eq 6 has four phenomenological parameters that we shall explore in further detail:

B0, λ, a, and ϕ. The former two parameters are already familiar from phenomenological

descriptions of data in paradigms using fixed-sized second-step for the target. The latter are

new, arising in paradigms with sinusoidal disturbances.

The amplitude of the decay of the baseline also bears dependence on the learning rates as

well as on the initial condition. Because of the strong influence of the initial condition on this

parameter, we refrain from a comparison of the behavioral fittings to the predictions from the

generative model for this case.

Part of the material discussed in this contribution have been presented in the form of post-

ers or slide presentations [43,44].

Results

Analysis of the data at the phenomenological level

To obtain a general idea of patterns present in the data, we first collapsed the data for each

stimulus frequency and adaptation type across participants (group data). We fit these data

using a piecewise continuous function given by the addition of a monotonic (exponential)

decay of the baseline–spanning both pre-adaptation and adapting trials- and a periodic

entraining of the oculomotor response to the sinusoidal stimulus that begins at the onset of the

adaptation block. This choice was supported by the fact that we had confirmed using statistical

model selection criteria (i.e., AIC and BIC, [38–41,45]) that this functional dependence was

the best descriptor of the oculomotor response among the set of models tested in Cassanello

et al. [11]. For illustration purposes only, Fig 1 shows the group data in each dataset, along

with the fits resulting from the parameter estimation based on the phenomenological model of

Eq 6. The same parameterization was used to fit each participant’s run. Figs 2 and 3 summarize

the estimation of the phenomenological parameters entering Eq 6. Fig 2 shows the values of

mean ± SEM of the parameters estimated from every individual dataset for each frequency and

adaptation type.

Some features are readily apparent from these plots. First, the frequency of the ISS is reliably

estimated (cf. Fig 3b and 3d). Second, the amplitude and the lag of the periodic components

of the adaptation gain decay with increasing frequency of the stimulus (Fig 2a and 2b). The

amplitudes of the periodic component are systematically larger in Two-way adaptation, while

the lags observed in global adaptation are systematically larger than in the Two-way case. The

systematic decay of the values of the lag with increasing frequency does not seem to extend to

the smallest frequency (1 cpb in the new dataset). This may be related to the fact that at such

low frequency the stimulus resembles more the behavior of a ramp that then turns rather than

a truly periodic disturbance.

The parameters that affect the observed drift in the baseline (i.e., asymptote and timescale,

Fig 2c and 2d) remain rather independent of the experimental condition. This feature is more

apparent in the ORIG dataset, but it still seems to hold in the FREQ dataset. An exception

arises at the lower frequency (1 cpb) tested in the FREQ dataset. However, the case of fre-

quency one is rather special and should possibly be considered as transitional between periodic

and non-periodic stimuli.

Fig 3 provides an idea of the quality of the fits by showing the evidence of the data in favor

of the models tested (cf. [11,13,28]). Upper and lower rows correspond to Two-way and Global

adaptation type respectively. For dataset ORIG, Fig 3a shows the logs of the odds ratio of the

parametric model of Eq 6 against a noise only model consisting of the block mean with
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Fig 1. Fits of the phenomenological model to the experimental data. The plots show adaptation gain (colored lines) averaged over individuals in the (a) Two-way

adaptation and (b) Global adaptation condition of the ORIG data set (reported in [11]), as well as the (c) Two-way adaptation and (d) Global adaptation condition of

the FREQ data set, using the same paradigm over an extended range of frequencies. The fit (black line) is based on Eq 6. The same equation was fitted to data from

each participant in each condition and experiment, to estimate phenomenological parameters on an individual basis. For illustration purposes only, the figure depicts

fittings done over the averages along with 95% confidence intervals (gray shaded areas). The black dotted lines indicate the time evolution of the baseline if the

amplitude of the periodic response were zero, corresponding to a drift only model. The solid black lines indicate the approximate middle-point locations of the

periodic component.

https://doi.org/10.1371/journal.pcbi.1006695.g001
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variance similar to that of the data. Each bar is split into the log of the odds ratio of the full

model to a drift only model that lacks the sinusoidal component (darker tone of the bars)

added to the log of the odds ratio of the drift only model to the noise only model described

above (lighter tone of the bars). This separation is possible because the models are nested so

that the simpler models can be obtained from the full model by eliminating parameters. The

evidence then compares the density of models likely to fit the data. Fig 3b shows the estimation

of the frequency of the oculomotor response against the actual frequency of the stimulus for

the three frequency values tested in dataset ORIG (3, 4, and 6 cpb). Fig 3c and 3d shows the

evidence and the agreement of the response with the five frequencies used in dataset FREQ (1,

3, 6, 12, and 24 cpb).

State-equation fittings and model selection

To assess the generative model, we fit Eq 5 to all data available. For illustration puposes only,

we first show that the model provides a reasonable overall fit to the group data. Fig 4 shows fits

of the oculomotor response predicted by the full form of the generative model given by Eq 5

with all five parameters described in the Methods section: K, A, m, D as well as the initial con-

dition G. As before the qualitative agreement of the fits and the data is evident in both datasets.

As we did with the phenomenological fits, we included the pre-adaptation blocks in each con-

dition in each dataset.

For all subsequent analyses, we fitted models to individual data. In particular, we compared

16 different models that differed from each other depending on which parameters were fitted

Fig 2. Phenomenological parameters as a function of ISS frequency, estimated from both datasets (ORIG,

diamonds, and FREQ, circles). (a,b) Amplitude (a) and Lag (b) parameters of the periodic (sinusoidal) component of

the response. (c,d) Asymptote (c) and timescale (d) parameters of the monotonic drift of the baseline toward greater

hypometria. Each point is a condition defined by type of adaptation and ISS frequency. Blue and red colors correspond

to horizontal Two-way and Global adaptation, respectively. Error bars are SEM across participants. These four

parameters are further compared to the values predicted by the solution to the generative models tested.

https://doi.org/10.1371/journal.pcbi.1006695.g002
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(see Methods for details). We used Akaike’s information criterion (AIC) to explore statistical

selection among these models. Akaike weights (cf. section II of [40]) are shown in Fig 5 segre-

gated by model and condition, for datasets ORIG and FREQ, respectively. In each condition

(identified by adaptation type and stimulus frequency), we computed a matrix of weights in

the following way. Because the best fitted model may differ between individuals, we first com-

puted the AIC weights among the 16 models for each participant and condition. Then we aver-

aged the resulting individual weights across participants. Results from this procedure are

shown in Fig 5.

Inspection of Fig 5 suggests clear overall preference for models in groups II (which include

m but not D) and IV (featuring both m and D). We discuss below why this is expected on theo-

retical grounds given the features of the data. Models from group IV that learn based on two

error samples, are preferred in Two-way adaptation, specifically the full model (KAmDG) and

the model in which A was set to unity (KmDG). Models in group II that feature a single learn-

ing rate (error-correcting based only on the last experienced feedback), specifically KAm and

KAmG, have an edge in Global adaptation. In what follows, we will focus on a comparison of

these four models.

Fig 6 shows the values of the generative parameters (Mean ± SEM, N = 10 for dataset

ORIG, N = 13 for dataset FREQ) of the best models that learn only from the last experienced

feedback error (KAm, KAmG). Left and right columns correspond to datasets ORIG and

FREQ respectively. Learning rate K, persistence rate A and drift parameter m are shown in Fig

6a, 6b and 6c. Fig 7 reports the parameters of the best models that update their hidden variable

based on double error sampling. Those models are KmDG and KAmDG. Fig 7a and 7d show

respectively the learning rates K and D that weight the contributions of last and next-to-last

Fig 3. Assessment of the quality of the fits of the parametric phenomenological model to the group data. (a,c) Each bar is split into the log of the odds ratio of the full

model to a drift only model that lacks the sinusoidal component (darker tone of the bars) added to the log of the odds ratio of the drift only model to the noise only model

described above (lighter tone of the bars). For all but one condition (Global adaptation, 24 cpd), the full model provides the best account of the data. (b,d) Estimates of the

frequency of the periodic component of the oculomotor response, for dataset ORIG (b) and dataset FREQ (d). Error bars are SEM.

https://doi.org/10.1371/journal.pcbi.1006695.g003
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Fig 4. Fits of the oculomotor response predicted by the state-equation (Eq 5) with all five parameters. The plots show adaptation gain (colored lines), averaged over

individuals in the (a) Two-way adaptation and (b) Global adaptation condition of the ORIG data set (reported in [11]), as well as the (c) Two-way adaptation and (d)

Global adaptation condition of the FREQ data set, using the same paradigm over an extended range of frequencies. The stimuli input in the model fits is s(n) (cf. Eqs 1–

3), which is zero in the preadaptation block. The same equation was fitted to data from each participant in each condition and experiment, to estimate parameters of the
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generative model on an individual basis. For illustration purposes only, the figure depicts fittings done over the averages along with 95% confidence intervals (gray shaded

areas).

https://doi.org/10.1371/journal.pcbi.1006695.g004

Fig 5. Akaike weights [40] for the 16 versions of the generative model, segregated by condition (frequency and

type of adaptation). The label along the middle y-axis indicates the model for the weight displayed in the horizontal

bars. Results from dataset ORIG (a) and FREQ (b). Weights for each of the three frequencies for each type of

adaptation (blue tones for Two-way expanding to the right, red tones for Global to the left) are stacked for each model

and color-coded as in Fig 1. The models are grouped according to the criterion described in the subsection Rationale
for generative model building and parameter exploration in the Discussion section (see text for further details). Gray

areas in the background indicate the average weight of the corresponding model group.

https://doi.org/10.1371/journal.pcbi.1006695.g005
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feedback, Fig 7b and 7c show the persistence rate A and the drift parameter m. Note that all

models include the drift parameter m as a fitting parameter. We shall explain below why this

should be expected.

Again, several features are readily apparent from these plots. The learning rates (K and D)

obtained from ORIG [11], show a rather clear segregation between Two-way adaptation and

Global adaptation: K and D are larger for Two-way (blue colors) than for the Global case (red

colors) suggesting that the extra variability brought upon by the random directions of the sub-

sequent saccades characteristic of Global adaptation has a detrimental effect on all learning

rates. They do not show a strong dependence on the frequency but the range of values used in

that experiment was rather narrow, ranging from 3 to 6 cpb. This segregation in the learning

Fig 6. Average over individual parameters of generative models KAm, KAmG, the best among those that learn

from the last feedback only (cf. Eq 5 with D = 0). Blue and red colors correspond to horizontal Two-way and Global

adaptation, respectively. (a) Learning rate K, (b) Persistence rate A, and (c) bias or drift-parameter m are plotted as a

function of condition. Both favored models feature A and m as fitting parameters. Note the variability in their fitted

values across conditions, in particular for dataset FREQ. Error bars are ±SEM.

https://doi.org/10.1371/journal.pcbi.1006695.g006
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rates between Two-way and Global adaptation is also clearly present in the best models fitted

to dataset FREQ.

A feature observed in all cases is that in models that learn only from the last experienced

error, the (single) learning rate (K) shows a mild increase with the frequency (cf. Fig 6a). This

changes substantially if learning from the next-to-last feedback is included. In all of these mod-

els, the following features are observed. First, the magnitude of K, the learning rate of the last-

feedback error-correction term increases by about an order of magnitude with respect to the

models that do not have next-to-last error-correction (compare the scales of Figs 6a and 7a).

Second, the magnitude of the next-to-last error learning rate (D) is similar to that of the last

error (K) but with opposite sign. This seems to suggest that the next-to-last error is weighted

negatively (or actively attempted to be forgotten) in the algorithm. Third, the discrepancy in

magnitude between K and D is consistently larger for Two-way than for Global adaptation

(compare the separation between corresponding blue and red lines in Fig 7a and 7d). Fourth,

Fig 7. Average over individual parameters of generative models KmDG, KAmDG, the best among those learning from last and next-to-last feedbacks (double-

error-sampling model; cf. full Eq 5). Blue and red colors correspond to horizontal Two-way and Global adaptation, respectively. (a) Learning rate K, (d) Learning rate

D, (b) Persistence rate A, and (c) bias or drift-parameter m are plotted as a function of condition. Both favored models feature D and m as fitting parameters. Note that

in both models, the bias parameter m, and the persistence rate A in model KAmDG, display much lower variability in their fitted values across conditions when

compared to that of Fig 6. (e,f) Addition and difference of both learning rates, κ = K + D and η = K −D (see text for discussion).

https://doi.org/10.1371/journal.pcbi.1006695.g007
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the learning rate K reverses its dependence with the frequency of the stimulus with respect to

the models without D, and now decreases monotonically as the frequency of the stimulus

increases. At the same time, the magnitude of D also decreases with the frequency. As a conse-

quence, the discrepancy in magnitude between K and D is such that the addition of both learn-

ing rates approximately matches the range of the values of K fitted in the models that learn

only from the last feedback (compare the values plotted in Figs 6a and 7e). This suggests that

when the additional error learning is not part of the model, the only learning rate fitted may

represent an average across subprocesses.

The values of the parameters fitted with the best four models are shown in S1 Table

(Mean ± SEM, N = 10 for ORIG, N = 13 for FREQ). To assess dependence of the generative

parameters on the experimental conditions we run 2 X 3 (ORIG) and 2 X 5 (FREQ) repeated-

measures ANOVA on the fitted values using as regressors type of adaptation (Two-way and

Global) and ISS frequency. Results are shown in S2 Table for the parameters given in S1 Table.

We regard as more representative the results from dataset FREQ due to the more extended

range of frequencies tested. Consistent with the qualitative observations mentioned above,

while type of adaptation is highly significant for the learning rates in every model, frequency

shows significance for K and D only in the models that feature double error sampling (KmDG,

for both datasets, KAmDG only for FREQ) but not in those learning just from the last feedback

(KAm, KAmG). As for the persistence rate, frequency is never significant suggesting that it can

be kept fixed as in model KmDG. Type of adaptation is significant in KAm and KAmG but

such significance disappears in KAmDG.

Analytical solution of the generative model: Predicting the

phenomenological parameters

The iteration of state-equations that learn from the last feedback already qualitatively predicts

both components of the phenomenological response. In general, the complete response can be

interpreted as a convolution of the stimulus with a response function. This response function

integrates the stimulus by weighting the disturbance over a temporal window, the size of

which depends on the magnitude of the learning and persistence rates that combine to assem-

ble the weights (cf. S1 Appendix). Contributions from constant components of the disturbance

that arise either from constant features in the stimulus (as in the traditional fixed-ISS paradigm

[1]) or from intrinsic biases that may not be strictly error-based in nature (e.g., in our case rep-

resented by the drift parameter; cf. [37]) accumulate across trials, changing saccade gain in a

monotonic fashion akin to a drift of the baseline towards an asymptote. Iteration of the sys-

tematically varying part of the disturbance results in its convolution with similar weights but

the trial-by-trial variation usually prevents finding a closed form for the series re-summation.

However, a sinusoidal disturbance avails a closed analytical integral solution, it is periodic

with the same frequency, lagging the stimulus by a number of trials. Two new phenomenologi-

cal parameters of this periodic response—its amplitude and lag—bare characteristic depen-

dences on the learning parameters.

Above, we fitted the extended version of Eq 6 to the data and obtained and reported esti-

mates for its phenomenological parameters (i.e., frequency ν, amplitude a, lag ϕ, asymptote B0,

timescale λ and decay amplitude B; cf. Fig 2 above). Similarly, we fitted the generative parame-

ters for all generative models using the corresponding versions of Eq 5. Figs 6 and 7 display

those estimates for the four models that provided the best fits (excluding D: KAm and KAmG
and including D: KAmDG and KmDG respectively).

When the learning algorithm includes several error-based terms, Eq 5 can be integrated

using techniques standard within the theory of LTIS [42]. This integration provides

Generative learning model for saccade adaptation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006695 August 9, 2019 19 / 35

https://doi.org/10.1371/journal.pcbi.1006695


analytical predictions of the phenomenological parameters as functions of the learning

parameters fitted with the generative models (Eqs 7 through 12). We attempt matching these

predictions to the values fitted using the phenomenological parameter estimation imple-

mented before (see Fig 2). It should be pointed out, however, that the phenomenological

parameter values have also been obtained from fits to the data and therefore should only be

regarded as indicative reference values to guide intuition, not as ground truth. Validation of

the actual underlying structure of the learning model relies ultimately on statistical model

selection. Yet, a direct comparison between the fitted phenomenological parameters and

analytical predictions evaluated on the fitted generative parameters is informative because a

given value of a phenomenological parameter has to be compared to diverse combinations of

the generative parameters that in turn depend on the specific structure of the learning

model.

We start with Eq 11 that provides a relationship between the expected asymptote of the

adaptation gain at large trial number and the generative model parameters.

B0 ¼
m

1 � ðA � ðK þ DÞÞ

A first significant observation about this expression is that in order to observe a drift in

the baseline of the adaptation gain (i.e., in order to have an asymptote B0 6¼ 0), a finite

value of the drift parameter m is strictly necessary. If m vanishes, the adaptation gain would

maintain a baseline pinned at zero regardless of the values of K, A or D. In addition, in a

situation where A ~ 1, B0 �
m

KþD or m
K in models where D = 0. Note that these are all signed

magnitudes, not absolute values. In other words, a small learning rate K or a small number

resulting from the addition K + D will modulate the size of the asymptote and will determine

its sign (i.e., will modify the degree of hypometria or hypermetria). Still a finite value for m
is strictly needed to have non-zero asymptote. Recall that when m is not a fitting parameter,

its value is set to zero. Due to the pervasive baseline drift across all of our data, all models

favored under statistical model selection contain m as a fitting parameter. This is why model

groups II and IV (cf. Fig 5) are preferred, as pointed out above and in the Discussion. Note,

in addition, that the smaller the learning rate (K or K + D), the larger the size of the asymptote

B0.

Experimentally, we observed drifts towards higher hypometria in all averages and in

most of the individual data. Note that formatting the data in terms of adaptation gain
instead of saccade gain allows us to remove confounds coming from constant contributions

from the stimulus and therefore the parameter m should be regarded as intrinsic to the sys-

tem. In other words, m characterizes or quantifies learning that would occur in absence of

stimulus disturbance (i.e., with zero ISS), as if the system has an intrinsic propensity to mod-

ify its gain by virtue of environmental or experimental conditions not necessarily linked to

an error.

Fig 8a displays the matching of the analytical predictions of the asymptotes computed by

inserting the fitted values of m, A, K and D into Eq 11 for each participant’s data, to the

phenomenological estimation of B0 obtained from Eq 6 and the parameter estimation of the

phenomenological fits of the data for both datasets and both adaptation types.

A second parameter characteristic of the baseline drift is given by the timescale. Fig 8b

shows predicted values for the timescales that result when values of m, A, K and D fitted with

the state-equation are inserted in Eq 12. The first two rows of Fig 8b show a clear overestima-

tion of the baseline timescale in models that do not feature double error sampling (i.e., KAm
and KAmG) as several individual data points fall outside the boundaries of the plot. Yet, mod-

els that include corrections based on the next-to-last error term, seem to underestimate the
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timescale (in particular model KmDG). When introducing Eq 12, we pointed out that if the

second error learning rate D is negative, the dominant mode in the solution still features a

monotonic decay that can fit the phenomenologically observed exponential baseline drift of

the gain. This is indeed the case in the majority of fits to the individual participants’ runs:

Fig 8. Comparison of phenomenologically fitted parameters to their theoretical predictions based on the generative model. y-axes show

the values obtained with the phenomenological parameter estimation (Eq 6); x-axes show predictions obtained by inserting the best estimated

values of the generative parameters into the analytical expressions of Eqs 7–12 (cf. ‘Using the generative model to predict the parameters of the
phenomenological description of the adaptation gain’ in the Methods section). Each row corresponds to one of the four best generative models.

Each point is a single participant in a given condition and experiment. Data from the condition with a frequency of 1 cpb has been omitted

because the predictions were poor for all models (in particular for the lag valiable, see the text for a discussion of this point). (a) Asymptotes of

the gain at large trial numbers (B0 in Eq 6 vs predictions by Eq 11). (b) Timescale of the decay of the baseline (λ in Eq 6 vs predictions by Eq 12).

Note the wide spread of the predicted values for models KAm, and KAmG that also results in several outliers beyond the limits of the subplot. In

contrast, models KmDG tend to underestimate the phenomenological timescales. Model KAmDG provides the best prediction of the

phenomenologically fitted values with only two points just beyond the limits of the plot. (c) Amplitude of the periodic component of the gain (a
in Eq 6 vs predictions by Eqs 8–10). Note that models KAm and KAmG tend to underestimate the observed amplitudes of the peridic

component of the gain. (d) Lag of the periodic component of the gain (ϕ in Eq 6 vs predictions by Eqs 7–10). The plots reveal a slight tendency

for models KAm and KAmG to overestimate the length of the lag with respect to the predictions of the models including double error sampling

(KmDG and KAmDG).

https://doi.org/10.1371/journal.pcbi.1006695.g008
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Across models in group IV, D was non-negative in only 13% of the individual runs; 6% for

Two-way adaptation and 21% for Global adaptation data. For model KmDG, D was non-nega-

tive in 7% of all runs; with only 1% (1 run out of 95) for Two-way adaptation and 14% for

Global adaptation. Furthermore, when estimating the timescales of models that include

double error-correction, Eq 12 consistently gives smaller values than for models without the

second error term (compare subplots of Fig 8b for the corresponding models, cf. Fig A,

S1 Appendix). This ordering relation between the timescales of models with and without D
was unknown before conducting the fits. Thus, data collected using a sinusoidal adaptation

paradigm suggests that including a second error-correction term yields a significant decrease

in the timescale with respect to models featuring a single error-correction term. Therefore, the

integration windows (i.e., the inverse of the timescale) of models with double error-correction

grow significantly larger compared to those that lack the second error sampling.

Asymptote and timescale are parameters traditionally investigated and reported in adapta-

tion to fixed-step disturbances. Sinusoidal adaptation paradigms provide two additional

parameters associated to the periodic component of the adaptation gain observed in these pro-

tocols. Fig 8c and 8d compare predictions for the amplitude and the lag of the periodic compo-

nent of the gain obtained by using Eqs 7 through 10 above. Data from both datasets suggest

that models that do not feature double error sampling underestimate the magnitude of the

amplitude of the periodic component of the oculomotor response (cf. predictions from these

models in Fig 8c). This feature in fact is common to all models that learn from a single feed-

back and include m (besides models KAm and KAmG), but the inclusion of D helps mitigating

misestimation of this amplitude.

The last comparison is provided by the lag of the periodic component. Fig 8d compares

predictions based on the state-equation learner (Eqs 7 and 10 furnish predictions for the com-

ponents of the lag ϕ and φ after inserting the parameter values fitted with Eq 5) and the phe-

nomenology (parameter ϕ in Eq 6). From Fig 8c and 8d it is apparent that the models that

include both m and D as fitting parameters provide better predictions, also displaying less vari-

ability across participants, in particular for the Two-way adaptation type. Among models with

D = 0, again models KAm and KAmG fit best. Fig 8d shows, however, that these models appear

to overestimate the lag (cf. compare corresponding subplots in the figure), while models that

have a second learning rate D match better the empirically observed lag. In addition, all models

fail the estimation of the lag for a disturbance of frequency one as they all significantly overesti-

mate the lag observed. Even though the predictions of the other phenomenological parameters

are reasonable (the amplitude of the periodic component, timescale and asymptote), predic-

tions for the 1cpb condition for both Two-way and Global adaptation have been omitted alto-

gether in Fig 8. This mismatch between the direct phenomenological estimation of the lag

from the data and the analytical predictions arising from the integration of the state-equation

for the case of the 1cpb condition, may be rooted in the fact that the functional dependence of

the phenomenological parameters on the generative ones is determined by the specific sinusoi-

dal dynamics of the driving stimulus, while the case of a 1-cpb frequency is the least periodic

condition among all tested.

Discussion

We used a modified version of the traditional two-step saccade adaptation paradigm ([1]; see

[2,46] for reviews) in which the size of the second step varied as a sinusoidal function of trial

number with an amplitude of 25% of a fixed pre-saccadic target amplitude. We recorded

observers’ eye movements at a total of six different frequencies and applied the sinusoidal

disturbance always along the saccade vector which was aligned either in a horizontal
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bi-directional fashion (Two-way adaptation) or in random directions drawn from a uniform

circular distribution (Global adaptation). The oculomotor response, quantified by the adapta-

tion gain, followed the disturbance variation with comparable frequency, an amplitude rang-

ing between 10 and 30% of that of the stimulus (i.e., 2.5 to 7.5% of the saccade amplitude), and

lagging the stimulus by a few trials. In addition, it developed a systematic drift of the baseline

towards larger hypometria that reached asymptotes of around 40% of the disturbance ampli-

tude (i.e., 10% of the saccade amplitude) and was largely comparable across conditions. The

phenomenological description in Eq 6—composed of a periodic response and an exponential

decay—captured this behavior well and we estimated all six parameters pertaining to that

description.

The present study explored whether the phenomenology described by Eq 6 can be modeled

with a state-equation, i.e., a generative rather than descriptive model of the underlying sensori-

motor learning. We clearly show that the recorded saccade adaptation data is indeed predict-

able in a robust and stable way using a linear time invariant state-equation similar but not

identical to those proposed before in the literature. Moreover, in previous accounts, simula-

tions based on generative models as well as ad-hoc fittings (mostly exponential or monotonic)

of the temporal evolution of the gain were provided without specifying a pathway of how to

evolve from one description to the other. We suggest that connection here and provide results

of the derivation involved in transitioning between these descriptions.

Rationale for generative model building and parameter exploration

In mathematical terms, the functional form in Eq 6 is the integral solution of a family of LTISs

of which Eq 5 is a particular example. It is referred to as a state-equation or state-space model

because the internal variable x characterizes the gain or state of adaptation of the system. This

algorithm is generative because it estimates the value of x at trial n + 1 by modifying its estimate

at the previous trial including possible effects of systematic biases and correcting the former

value by weighting sensory feedback resulting from movement execution [21,26,47,48] (see

also [25,32]; for further details on our specific use see the Methods section). Here we limit our

discussion to noise-free generative models in that Eq 5 does not include any noise term. Yet,

Fig 1 together with Fig 4 suggest that integral solutions as well as numerical outcomes of noise-

free generative models survive ensuing variability, at least for the paradigm, type of stimulus

and within the ranges of the conditions tested.

We analyzed 16 models that differed in the specific parameters that were fitted and then

used Akaike’s information criteria to attempt model selection. Since we were primarily model-

ing intrinsic error-based sensorimotor learning, the learning rate K—that weights the impact

of the last feedback error on the state of adaptation—was present in every model. Second, we

included the initial condition G as a fitting parameter in half of the models. This parameter is

not part of the trial-by-trial learning algorithm and its effect should decay as the trial number

increases (cf. S1 Appendix). However, the initial condition affects the amplitude of decay of

the baseline drift (cf. B in Eq 6). Because the argument of Eq 5 is an internal variable not

directly experimentally accessible, a proxy for its initial value can only be approximated (for

example, by averaging the first five gain values in the block) or included as a fitting parameter.

Third, we included a persistence rate A that weighted how much of the estimate from the pre-

vious movement remained in the subsequent one. The fourth parameter, m, captured system-

atic effects, that are not error-based in nature, and gave origin to drifts in the baseline that

were pervasive across all conditions. Finally, we considered the plausibility and study the

effects of a second learning rate D that tracks errors other than the most recent (here, the next-

to-last feedback error).
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To further discuss the effect of the generative parameters, we split the 16 models into four

groups:

I. Models that neither included terms depending on the second learning rate D nor the drift

term m (K, KG, KA, KAG);

II. Models without terms depending on D but including m (Km, KmG, KAm, KAmG);

III. Models including terms depending on D but excluding m (KD, KDG, KAD, KADG);

IV. Models with both D and m terms included (KmD, KAmD, KmDG, KAmDG).

We recall that in models where A is not a fitting parameter, A = 1. The groups are listed on

the left side of Fig 5. Models within group I consistently fitted worst. Moreover, models that do

not include m (groups I and III) cannot capture an evolution of the gain into a stationary

asymptotic value because the state equation does not admit a solution featuring that behavior

(that is, if the stimulus has no constant term). These models, however, may be useful in experi-

mental paradigms where a stable state of adaptation is not clearly reached either because the

length of the adaptation block used may be too short or because the driving disturbance is

unbounded (for example a linear ramp). On the other hand, models that include sampling

from two errors (cf. groups III and IV) will likely be better suited to extract correlations built

into the stimulus as it is the case of a sinusoidal ISS.

The fits of the phenomenological model (Fig 1; Eq 6) suggest that asymptotic behavior of

the baseline and reflection of the stimulus self-correlation (entraining) were clear structural

properties of the oculomotor response. The analytical solutions of models in both groups II

and IV are consistent with this phenomenology. Fig 5 summarizes the AIC weights emerging

from the fits to the individual participants’ data. The weights shown in the horizontal bars are

averages over individual participants’ weights for each condition and color coded by the fre-

quency of the stimulus. Data from Two-way adaptation is depicted with blue tones in bars

increasing towards the right. Global adaptation is shown with bars spanning to the left in red

tones. The average weight for each model family is shown by the gray background behind the

corresponding group. While models in group II already generate responses in qualitatively

good agreement with the evolution of the adaptation gain, it remains to be decided whether

corrections based on the memory of more than a single error provide for a better fit. AIC

weights show that group IV clearly outperforms all others in Two-way adaptation in both data-

sets, suggesting that the best generative model to describe this type of adaptation includes all

four parameters K, A, m and D. In Global adaptation, models from group II either match or

slightly outperform those of group IV. Model comparison showed that a state-equation includ-

ing a single parameter or any combination of only two of the four parameters K, A, m and D
could not adequately account for our data (cf. Fig 5). In addition, an inspection of actual values

of the parameters fitted across the population suggests that the parameters A and m may be set

to constant values, that is, to almost one for the former and to a very small and negative num-

ber for the latter (cf. Fig 7c and 7d), at least within the range of frequencies tested in these

experiments. Overall, the drift parameter m and the second learning rate D proved useful and

necessary to account for systematic effects in our data, suggesting (1) that some changes in the

adaptation state are not error-based and (2) that—at least under specific circumstances—the

brain keeps track of at least one extra occurrence of the error besides the last experienced one.

Three-parameter models that did not involve D (specifically KAm) were most successful in

Global adaptation and in the high frequencies of Two-way adaptation. This could be simply a

reflection of increased levels of measurement noise in these conditions giving an upper hand

to models with fewer parameters. More interestingly, it could point to an architecture that
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samples two errors only under certain conditions, for instance, when errors are repeatedly

experienced for the same saccadic vector, or, when the variation of the feedback error has a

high signal-to-noise ratio. We speculate that overtraining along a given direction, understood

as the repetitive experience of consistent error along similar saccade vectors in Two-way adap-

tation (note that in our paradigm Two-way adaptation stimulates only two retinal locations)

may give rise to vector specificity and, consequently, to the adaptation fields typically observed

with fixed-step paradigms. Indeed, Rolfs and collaborators [18] suggested that Global adapta-

tion, featuring apparent full transfer across random directions, appears to onset ahead of the

development of vector-specific adaptation fields. This appears consistent with the present find-

ing that models that rely on a single error-correction show timescales corresponding to faster

evolution of the baseline drift (although with longer lags in the sinusoidal component) as com-

pared to those of Two-way adaptation (featuring shorter lags in the sinusoidal component con-

sistent with tracking the stimulus more closely due to the repetitive training in a specific

direction).

Drift in the baseline and the meaning of m
The persistent drift of the baseline towards higher hypometria is a distinctive feature in our

data that cannot be accounted for on the basis of motor adaptation [49]. We included an extra

parameter m to account for this drift in mean adaptation gain towards an asymptote differing

from the mean of the stimulus (cf. Eq 11). This parameter is conceptually novel, distinct and

independent of the persistence rate A, and determines the presence of a non-zero asymptote

via Eq 11. Because in our paradigm the goal of the task was to land on the target as close as

possible, and because the sinusoidal ISS introduced a continuously changing prediction error,

the best expected outcome would be to track the disturbance within the levels of error typical

of trials without disturbance. With respect to that goal, the presence of a baseline drift intro-

duces an additional discrepancy that does not, however, hinder successful adaptation to the

disturbance.

Saccadic eye movements slightly undershoot their target on average [50] and this systematic

offset corresponds to the internally predicted visual outcome of a saccadic eye movement

[51,52]. We surmise that our paradigm may have yielded a re-calibration of this desired offset

[53] over the course of an experimental run. This recalibration towards a larger undershoot

may result from the high probability of a quick return saccade after every eye movement in

our fast-pace paradigm, reducing the utility of maintaining a saccade gain close to one. We

note that this systematic decrease in saccade gain may in general—albeit to different degrees—

pervade the study of saccadic adaptation (but see [7,54]). In fixed-step paradigms (as opposed

to the sinusoidal paradigm employed here) it would have been obscured as the error-based

correction for the surreptitious target displacement undergoes similar dynamics as the drift

reported here.

On the other hand, from the point of view of the internal model of the movement that the

brain may implement [33–35], this bias parameter m may hint to a discrepancy between the

experimental coordinate system where measurements are acquired and the coordinate system

in which the internal model is represented.

On a neurophysiological level, the small systematic bias that gives rise to the drift of the

baseline may originate from the dynamics of the responses in the neuronal substrates involved

with saccade adaptation ([55–60], R. Shadmehr, personal communication, July 12, 2018). It

is also possible that the fast-pacing used in our paradigm exacerbates effects that generate a

small and negative bias parameter, m, which appeared to onset already at the pre-adaptation

block. That would further suggests that the magnitude of m may depend on the inter-saccade
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interval as well as on the precise timing of the ISS onset, which should be addressed in future

studies.

Consequences of learning from double error sampling (D parameter): Two

learners?

The models that best explained the data featured a double error sampling, learning not only

from the feedback experienced after the last saccade but also from the movement that occurred

in a trial before that. Hence, the best models used a feedback reaching further back in time

through the K- and D-terms of Eq 5. Yet, does the oculomotor system actually implement this

double error sampling that may coherently participate in a single internal model prediction?

We suggest that the brain may attempt to approximate the performance achieved by the dou-

ble-error-sampling algorithm by using two single-feedback learners operating on appropriate

combinations of the stimulus sampled at two different times.

To understand that, we return to Eq 5. For simplicity, we will assume that m = 0.

xðn þ 1Þ ¼ ðA � KÞxðnÞ � Dxðn � 1Þ þ KsðnÞ þ Dsðn � 1Þ; ð13Þ

and write a transformation among state variables sampled at two different trials as,

Xþ nð Þ ¼
1

2
fxðnÞ þ xðn � 1Þg and X� nð Þ ¼

1

2
xðnÞ � xðn � 1Þf g;

that can be substituted in the RHS of Eq 13 using the inverse relations:

xðnÞ ¼ XþðnÞ þ X� ðnÞ; and xðn � 1Þ ¼ XþðnÞ � X� ðnÞ:

We can re-write Eq 13 in terms of these alternative state variables X+ and X−:

Xþðnþ 1Þ þ X� ðnþ 1Þ ¼ ðA � kÞXþðnÞ þ ðA � ZÞX� ðnÞ þ kSþðnÞ þ ZS� ðnÞ; ð14Þ

where we adopted the definitions of κ = K + D, η = K − D, Sþ nð Þ ¼ 1

2
sðnÞ þ sðn � 1Þð Þ and

S� nð Þ ¼ 1

2
sðnÞ � sðn � 1Þð Þ. Eq 14 avails the interpretation of the generative model as selec-

tively learning into two component channels that learn from a single feedback error taken

from different sources. The source for the learner X+ is the mean of the two samplings of the

stimulus, i.e., Sþ nð Þ ¼ 1

2
sðnÞ þ sðn � 1Þð Þ. The source for the second learner is the rate of

change of the stimulus across the sampling events given by S� nð Þ ¼ 1

2
sðnÞ � sðn � 1Þð Þ

which, when the samplings occur on successive trials, it could be interpreted as the discrete

time derivative of the stimulus taking the elementary timestep as the (average) inter-trial

interval.

Note that the representation in terms of these alternative internal variables would signifi-

cantly alter the underlying structure of the noise-free learning model. But if we insist on keep-

ing a close connection to the parameters extracted using the double-error-sampling algorithm,

we would expect that the learning rate for learner X+ would be the addition of the rates for the

two errors, κ = K + D, while for learner X− it would be η = K − D (cf. Fig 7e and 7f). In all our

fittings using the double error sampling, K and D were very close in magnitude but carried

opposite sign. Furthermore, κ was small and similar in magnitude to the learning rate K
obtained for models that learned only from the last error. Because D was negative, the learning

rate η for the second learner became also positive but much larger than κ, in fact about an

order of magnitude larger (Fig 7e and 7f) effectively enhancing the overall gain of the process

without driving the system unstable [61–63]. As a consequence, (A − κ), which can be thought

of as an effective A+ will be much closer to unity than A− = (A − η). Therefore, X+ will learn

and forget much slower than X−.
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Using this double error sampling, the oculomotor system could track the rate of change of

the stimulus from one saccade to the next, besides just its last change in size and it would

approximate the learning efficiency of the double-error-sampling algorithm. The new internal

learning variables (X+ and X−) would learn from smoothed-out versions of the disturbance

resulting from the average sum and difference of the two sampled inputs. Whether this consti-

tutes an advantage over learning exclusively from the last feedback depends on the nature of

stimulus. If the disturbance is constant or fully random there would be very little advantage in

performing the double error sampling. In the former case, the inter-sampling variation is zero

leaving nothing to learn. In the latter, the inter-sampling variation would be another random

magnitude and there would be little advantage in learning from the variation in the feedback.

However, if the mean of the disturbance varies in a systematic way—as it does during sinusoi-

dal adaptation, and presumably in natural scenarios—learning from its rate of variation would

be advantageous and could well justify a large learning rate. In the representation of the dou-

ble-error-sampling model, unlearning actively the next-to-last sampled feedback error (i.e.,

with a large and negative D subtracted from an enhanced K) would materialize this advantage

with little extra investment. However, a negative learning rate feels counter-intuitive as

learning is believed to follow the direction of the correction suggested by the feedback. Segre-

gation of the learning underlying motor (or saccade) adaptation into two learners displaying

similar characteristics to those suggested here have indeed been proposed in other contexts

[8,25,64,65]. The argument presented above suggests a mechanistic way to construct a two-

learner system, in which the components X+ and X− can be considered statistics in counter-

phase. To approximate the double-error-sampling learner, the system may hold in memory

both samples, compute mean sum and differences between the samples and implement two

learners based on those statistics rather than from bare values of errors or stimulus occur-

rences. To achieve that, the oculomotor system would need to keep memory and weight pre-

diction errors from a former time scale besides the last feedback [65].

An important point to notice is that, even if there is double error sampling, it does not need

to be strictly the next-to-last error. It would be enough that the brain keeps a correlation of

errors over two different trials (cf. [66]) although it would be reasonable that they are spaced

only by a short delay [61]. This is a reasonable generalization since the inter-trial interval is

rather arbitrarily set by the pacing of the task that may or may not match a possible internal

sampling frequency by the brain. The frequency of the stimulus then determines to what

degree differences in the stimulus can be sampled, which may explain the dependence of the

amplitude and lag of the periodic component of the response with the frequency as well as the

fact that the evidence for the full model seems to peak at intermediate frequencies. In other

words, it may be easier to learn at certain frequencies (for a fixed amplitude) or at certain effec-

tive rates of change of the stimulus.

Dependency of learning rate on perturbation dynamics: Linear but not

strictly time invariant systems

We further explored whether the values of the generative parameters exhibited dependence on

the experimental condition, specifically with the type of adaptation and the frequency of the

disturbance. The parameters of our models remained time-invariant across pre-adaptation

and adaptation blocks. However, we did not rule out that these parameters may change with

adaptation type and stimulus frequency. In fact, LTIS models with parameters not strictly

time-invariant have been invoked to model (meta-learning in) savings in adaptation to visuo-

motor rotations [32]. Strict LTIS models with two learners had been able to successfully

account for savings in long-term saccade adaptation [8,25,64,67]) but were not able to fit
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differences in the dynamics of the adaptation, extinction and re-adaptation phases observed

using counter-adaptation and wash-out paradigms in adaptation to visuomotor rotations

without letting the rates change across the phases [32].

We limit our discussion to the best four generative models selected in the Results section.

In models KAm and KAmG (and in general in all models of groups I and II), the (only) learn-

ing rate K remained relatively independent of, or exhibited a tendency to grow with the fre-

quency of the stimulus (Fig 6a). Learning rates for Two-way adaptation roughly ranged

between 0.01 and 0.035 fraction of the error across the frequencies tested. The same parameter

in Global adaptation was smaller and remained within the range 0.005 to 0.015 (cf. Fig 6a,

S1 Table). These observations were confirmed by ANOVAs run on the fitted values of the

parameter K in models KAm and KAmG in that type of adaptation was always a significant fac-

tor while ISS frequency never was (S2 Table). These values of K compare reasonably well with

the magnitude of learning rates previously reported in the literature (cf. [8,19]). The depen-

dence of the learning rate on the frequency of the disturbance seems in qualitative agreement

with results from reaching experiments in which subjects learned to track a target undergoing

surreptitious displacement that followed a random walk [30,47]. Using a Kalman filter to esti-

mate corrections to the learning rate due to various types of variability Burge and collaborators

[30] argued that the learning rate increased as the drift of the walker increased. In the sinusoi-

dal adaptation paradigm where the amplitude of the sine function that produces the ISS is of

fixed amplitude, this situation occurs when the frequency increases because its size from one

trial to the next changes faster. However, this suggestion seems at odds with the intuition that

a more consistent stimulus should drive more efficient adaptation [68,69]. In particular, it has

been reported that a smooth gradual variation results in more efficient adaptation [3,70]. If

this were the case and reflected onto the model parameters, the learning rate should be higher

for smaller frequencies.

However, the dependence of the learning rate(s) on the frequency described above changed

rather dramatically when double error sampling was included (cf. Fig 7a and 7d). Interestingly,

in models that feature double error sampling, the learning rate of the most-recent error-term

(K) reversed its tendency and decreased as the frequency increases, achieving its highest

values in the conditions of lower frequency, this is, in situations where the stimulus displayed

higher consistency. Concurrently, the learning rate for the next-to-last feedback (D) achieved

its most negative values at lower frequencies and grew less negative as the stimulus frequency

increased. In the alternative scenario of two additive learners with single error correcting

terms that learned respectively from the half-sum and the half-difference of the two sampled

errors suggested in the previous sub-section, the learning rates κ and η also showed a distinct

dependency on the ISS frequency. The slow-learner (with learning rate κ) would only have cor-

rected up to 1% of the average of the two errors sampled while the fast-learner (with rate η)

would have produced corrections of up to 40% of the change experienced between the two

sampled errors (cf. Fig 7e and 7f). Note that this massive change in the dependence of the

learning rates on the frequency was a consequence of changing the hypothesized structure of

the model and not of correcting the magnitude of the rates for effects of variability. Once

again, ANOVAs confirmed that not only the type of adaptation but also the stimulus frequency

had significant impact on the learning rates (K and D, as well as κ and η) in models KmDG
and KAmDG as well as all models of group IV (cf. S2 Table).

In contradistinction, the retention rate A (Figs 6b and 7b) and the bias parameter m (Figs

6c and 7c) remained relatively independent of the frequency under such changes, although

their overall variability was clearly reduced in the models featuring double error sampling

(contrast the value ranges of m and A in Fig 6, against the corresponding ones in Fig 7, aside

from model KmDG in which A = 1; see also corresponding entries in S1 Table). ANOVAs run
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over these parameters further confirmed non-significance of the frequency except for model

KmDG on m in dataset ORIG (S2 Table). Type of adaptation occasionally modulated A in

dataset FREQ in models with a single error term. Taken altogether this suggests that both A
and m may be largely frequency independent and can be modeled as constant values maybe

differing in value for Two-way and Global types.

In summary, introducing a second error term increased the magnitude of both learning

rates (K and D) by an order of magnitude with opposing signs. The learning rates of these

models showed a clear dependence on the frequency of the disturbance: higher stimulus con-

sistency (i.e., lower stimulus frequencies) correlated with higher adaptation efficiency. At the

same time, the inclusion of the double error sampling reduced variability in the estimates of

the persistence rate A and the drift parameter m, indicating that their estimates were not

affected by the ISS frequency, and could thus be set to appropriate constant values.

Relation to previous work on sensorimotor control and adaptation

Multiple distinct learning processes contribute to sensorimotor adaptation [8,25,64–66,71].

Recent research conducted primarily within adaptation to visuomotor rotations or in reaching

movements, suggests that adaptation can be decomposed into two fundamental processes that

may operate in parallel: one that would be responsible for implicit learning that progresses

slowly and can be described mechanistically by a state-equation [49]. This slow learning pro-

cess is relatively stable over breaks, takes place with automatic, reflex-like behavior and its

properties tend to be sturdy and do not change fast with recent experience. A second, parallel

process, in turn, learns explicitly, is faster although it may require longer reaction time and

possibly voluntary behavior to be engaged. This faster process would exhibit longer term mem-

ory of prior learning [71–74].

We believe that our paradigm taps only the first, implicit component. Yet, we suggest that

our analyses provide evidence for two separable subcomponents, although both would be

intrinsic in nature [75]. In fact, a key difference between our oculomotor learning and learning

that occurs in adaptation to visuomotor rotations and during reaching in force fields is that

our participants were primarily unaware of the inducing disturbance. In contrast, in the afore-

mentioned paradigms, participants immediately notice a disturbance even when they may not

be fully aware of the exact effect. In this sense, our paradigm could be considered qualitatively

closer to that used by Cheng and Sabes [22] who studied calibration of visually guided reaching

in participants fully unaware of the stimulus manipulation. Their paradigm used a random,

time-varying sequence of feedback shifts. They found that a linear dynamical system (LDS)

with a single error term and trial-by-trial state update for variability implemented with an esti-

mation-maximization algorithm successfully described mean reach point and the temporal

correlation between reaching errors and visual shifts. They further argued that the learning

taking place under a random stimulus generalizes to a situation of constant shifts in a block

paradigm and, therefore, that adaptation dynamics does not rely on the sequence (or correla-

tion) of feedback shifts but can be generally described with the LDS model. In contrast to ran-

dom or block constant ISS, our paradigm featured a disturbance that was fully self-correlated

since it followed a sine variation with the trial number. Therefore, it may prove advantageous

for the oculomotor system to extract correlations embedded in the disturbance because they

would help tracking the target. As pointed out, including double error sampling would serve

this purpose.

We believe that the presence of a systematically varying disturbance enables a further

decomposition of the implicit component of adaptation, perhaps into a primary one, that

attempts to mitigate the end-point discrepancy regardless of self-correlations in the
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disturbance, and a second one that attempts to extract (and use) such correlations. It remains

an open question how these putative subprocesses may map on distinct or overlapping ana-

tomical structures, such as cerebellar cortices, deep cerebellar nuclei and extracerebellar struc-

tures [55,57,59,60,64,76–80].

A recent study suggested that learning in dynamic environments may be adequately mod-

eled with an algorithm popular in industrial process control, the proportional-integral-deriva-

tive (PID) controller [81]. The algorithm generates a control signal adding three error-related

contributions: a term proportional to the current error that resembles a usual delta-rule (the

P-term), a term that integrates over a history of errors experienced before the current one, and

a derivative term estimated from the difference between the last two errors. The model shares

some features with ours, in particular that the learning rate for the next-to-last error needs to

be negative to approximate the derivative term. The PID controller acts on the actual recorded

errors (the equivalent of the visual errors observed after each saccade is executed) and contains

no internal state estimation, whereas our model operates on an internal variable that contains

the state estimation of the prediction error that would result from the movement execution.

Our state variable in fact accumulates and retains a substantial portion of the history of previ-

ous error (the persistence term in Eq 5, see also the example given in S1 Appendix), which is

updated on a trial-by-trial basis by the term proportional to the latest prediction error (the

delta-rule term). The inclusion of an extra error in our state-equation (specifically that of the

previous to last one) effectively brings into play a contribution similar to the derivative term of

the PID model. In short, our D-term enables a systematic correction to the integral term (our

A-term) that otherwise would be determined rigidly by the iteration of the equation. In that

respect, keeping track of former errors enables a structural correction that acts at a global level

even when it is introduced on a trial-by-trial basis, lending both robustness and flexibility to

the algorithm. Ritz and collaborators [81] further compared the performance of the PID

model to a Kalman filter used to update a state variable in presence of noise applied on the sin-

gle error structure of the usual delta-rule and found that the PID controller performs better. A

further similarity with the aforementioned work lies in their observation that models with a

derivative term are usually not readily selected under statistical model selection even when

they may display significant improvement in the description of the behavior (see [81] for a lon-

ger discussion on this point).

Conclusions

Having adequate generative models that describe eye movements have been stressed before

[80,82–86] as an important tool to assess, at the single patient level, a variety of movement

abnormalities that have been identified as markers of neurological conditions or disorders at a

group level. In this study, elaborating on the idea of tracking a memory of errors [65], we

attempted to identify and constrain a relatively minimal set of requirements that would suffice

to model saccade adaptation data collected under the paradigm and stimulus that we recently

implemented [11] but that would also include previous accounts of the phenomenon under

other known paradigms. While certainly many refinements are still due, we unveiled features

of an algorithm that seems suitable to account for the sensorimotor learning observed in our

data. We hope it can be generalized, extended and adapted for use in future research.

Supporting information

S1 Table. Generative parameters fitted with the best four models. Model name is shown at

the top. The corresponding datasets can be identified by the stimulus frequencies tested:
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ORIG: 3, 4 and 6cpb. FREQ: 1, 3, 6, 12 and 24cpb.

(PDF)

S2 Table. ANOVA results on the generative parameters fitted with the best four models.

Repeated-measures ANOVA (2 X 3 on data from ORIG; 2 X 5 on data from FREQ) with fac-

tors type of adaptation and stimulus frequency was run on each of the four best models. Model

name is shown at the side of the table and parameter names are on the top. The dataset is indi-

cated in the cell at the upper left corner next the the parameter names. Highlights indicate the

cases where the corresponding factor shows significant effects.

(PDF)

S1 Appendix. Predictions of a state-equation with a sigle, most-recent error-based correc-

tion term. Effects of including next-to-last error-sampling.

(PDF)
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